Holistic Solutions for Environmental Compliance 27 January 2010

Göran Hellén
Senior Manager, Marine Regulations and Engine Affairs
Wärtsilä Industrial Operations
Product Centre Ecotech

Wärtsilä Scrubber System for SOx Reduction

- Gas Engine Alternative
- Some Holistic Challenges

Overview of Emission Control
 Technologies and Combinations

Available and Potential NOx Reduction Technologies

Available and Potential NOx Reduction Technologies: 4-stroke Solutions

CANDIADATE Tier III Combinations (4-s)	PROS (+)	CONS (-)
Nitrogen Oxide Reducer	Known technologyEngine efficiency	Urea handling/priceExh.gas temp limitation
2-stage + Wetpac/EGR	- Engine efficiency - No NOR / Urea	Water handling/priceEGR / fuel compatibilityPart load soot emission
Dual Fuel / DF + fuel conversion	- Known technology- Engine efficiency	On board gas systemReformer technologyLiquid mode efficiency
EGR (ext.) + Wetpac	-No 2-stage -No NOR / Urea	Water handling/priceEGR / fuel compatibilityPart load soot emission
2-stage + NOR	Urea consumptionEngine efficiency	- NOR operation with low gas temperature

□ Wärtsilä NOR System for NOx Reduction

SCR catalyst operation principle

Selection of NOR Reactor for Wärtsilä Engines

WÄRTSILÄ NOR OVERALL DIMENSION TABLE

WARTSILA NOR OVERALL DIMENSION TABLE						
Size	Engine Power kW	Reactor W mm	Reactor H mm	Reactor L mm	Flanges DN mm	Dosing Unit Size
1	←1260	945	4505	3440	500	1
2	1261 - 2240	1260	4690	3440	700	1
3	2241 - 3500	1575	5045	3440	800	1
4	3501 - 5040	1890	5215	3440	1000	1
5	5041 - 6860	2205	5410	3440	1200	1
6	6861 - 8960	2520	5915	3440	1300	2
7	8961 - 11340	2835	6110	3440	1500	2
8	11341 - 14010	3150	6485	3440	1600	2
9	14011 - 16950	3465	6685	3440	1800	2
10	16951 - 20170	3780	6885	3440	2000	2

- NOR reactor will be selected according to engine power
- Other components will be selected according to the chosen reactor size
- The design principle is that all components are to be chosen according to exhaust gas flow

Wärtsilä NOR Performance

- High activity over a wide temperature range
- Efficient SCR process
- Durable catalyst against ageing and erosion

Performance	NOx below IMO Tier III NOx reduction up to 90 %
Urea consumption	Typically 15-20 l/h / MW
Operation	 Fuels: MGO / MDO / HFO (< 1.0 % S) Next NOR generation can operate with high sulphur fuels for combination with scrubbers NOR delivery means ensuring the compatibility of the NOR system with the engine.

SCR System - Typical Consumables

TYPICAL OPERATION COST DISTRIBUTION

- 1. Reducing agent
- 2. Compressed air for reducing agent injection
- Compressed air for soot blowing
- 4. Power for NOx monitoring, if used (not in standard scope)
- 5. Air conditioning of cabinets
- 6. Catalyst element
- 7. Other

SCR References

 ■ More than 200 Wärtsilä engines with SCR are in operation today, Marine and Stationary Power plants – 4-stroke and 2-stroke

SCR with 2-stroke Engines

First two-stroke Selective Catalytic Reduction Marine Installation Worldwide:

> **Engines**: Main engine 1 x Sulzer 7RTA52U

> > Auxiliary Engines 2 x Wärtsilä 6L20

M/V "Spaarneborg" Vessels:

M/V "Schieborg"

M/V "Slingeborg"

– Type of ship: RoRo

Wagenborg – Owner:

- 1st vessel in service since December 1999

□Wärtsilä Scrubber System for SOx Reduction

After Engine - SOx Reduction with SOx Scrubber

Alkalinity in the Baltic Sea

Open sea alkalinity
Surface data (0... 15 m)
Data from 2001-2005

NaOH Consumption & Storage Capacity

NaOH consumption (a few % of fuel consumption) depends on:

- Fuel sulfur content
- SOx reduction

NaOH storage capacity depends on:

- Power profile
- Desired autonomy (bunkering interval)

- 10 MW engine
- 85% MCR
- 2.7% sulphur in fuel
- Cleaning efficiency 97%
- 50% NaOH solution
- NaOH consumption 3.2 m³/day
- (Fuel oil consumption ~48 m³/day)

NaOH Costs Insignificant Compared with Fuel Cost Savings

Fuel cost saving versus caustic soda costs

Göran Hellén

Test Results from Wärtsilä SOx Scrubber

Wärtsilä scrubber on Neste Oil MT "Suula" with a 4R20 auxiliary engine rated at 680 kW.

- Tests in 2008-2009, including certification.
- Tests on HFO with 3.4% sulphur and HFO of 1.5% sulphur

Test results

- SOx removal > 99% in all operating conditions
- (NOx reduction: 3 7%)
- (Particle matter reduction: 30 60%)

Wärtsilä Scrubber – Running on HFO June 2009

□ Waste Heat Recovery for Reduction of CO₂ and Fuel Consumption

Heat Recovery Application for Marine Propulsion Engines

Heat Balance RTA96C Engine

ISO conditions, 100% load

Heat Balance Standard Engine

Heat Balance with Heat Recovery

Engine efficiency improvement with heat recovery = 54.9 / 49.3 = 11.4%

22/31

Waste Heat Recovery Systems

Waste Heat Recovery

WHR system references:

- 6 Post-Panamax container vessels of the "Gudrun Mærsk" class for A.P.Moller with 12 RT-flex96C engines. First vessel commissioned in June 2005.
- **8 Post-Panamax container vessels** of the "Emma Mærsk" class for A.P. Moller with 14RT-flex96C engines. First vessel commissioned in September 2006.
- 6 **Post-Panamax container vessels** of the "Margrethe Mærsk" class for A.P.Moller with 12RT-flex96C engines. First vessel commissioned in April 2008.
- **2 VLCC's** for Bergesen Worldwide with 7RTA84T-D engines. Vessel delivery in 2009.
- **2 VLCC's** for SAMCO with 7RT-flex82T engines. Vessel delivery in 2011.

Engine Combined Cycles - ECCs

Wärtsilä Engine Combined Cycle Solutions on Stationary Power Plants

- ☐ First ECC project for Wärtsilä was in 1990 to Ringgold, 3 x 18V32GD
- Totally 10 projects under delivery, among them:

Attock Refinery, Pakistan

Nishat Power, Pakistan

Nishat Chunian Power

IGE (Monopoli), Italy

Fri-El, Italy

Green Energy, Italy

Liberty Power, Pakistan

Attock II, Pakistan

Etc.

9 x W18V46

11 x W18V46

11 x W18V46

6 x W18V46 LBF

4 x W18V46 LBF

1 x W18V46 LBF

11 x W18V46

□ Gas Engine Alternative

Natural Gas as Fuel - Gas Engine Technologies

Gas-diesel (GD) engines:

- Runs on various gas / diesel mixtures or alternatively on diesel.
- Combustion of gas, diesel and air mixture in Diesel cycle.

High-pressure gas injection.

Spark-ignition gas (SG) engines:

- Runs only on gas.
- Combustion of gas and air mixture in Otto cycle, triggered by spark plug ignition.

Low-pressure gas admission.

Dual-fuel (DF) engines:

- Runs on gas with 1% diesel (gas mode) or alternatively on diesel (diesel mode).
- Combustion of gas and air mixture in Otto cycle, triggered by pilot diesel injection (gas mode), or alternatively combustion of diesel and air mixture in Diesel cycle (diesel mode).
- Low-pressure gas admission.

Gas Engine Alternative **Dual-Fuel Engine Characteristics**

Wärtsilä 6L50DF

- **High efficiency**
- Low emissions, due to:
 - High efficiency
 - Clean fuel
 - Lean burn combustion
- Fuel flexibility
 - Gas mode
 - Diesel mode
- Two engine models
 - Wärtsilä 32DF
 - Wärtsilä 50DF

Gas Fuel Alternative – Typiacl NOx, SOx and Particulates Emissions – HFO versus Gas Fuel

In gas mode the DF engine meets the IMO Tier III regulation already today

Examples of gas (dual-fuel) engine references

Petrojarl 1 **FPSO** Petrojarl 2x 18V32DF 2x 52'000 running hours

Provalys and Gaselys **DF-electric LNG Carrier** Gaz de France Alstom Chantiers de l'Atlantique 2x 12V50DF + 2x6L50DF Total 92'000 running hours for 2 ships

Sendie Ceiba **FPSO** Bergesen 1x 18V32DF 38'000 running hours

Gaz de France energY **DF-electric LNG Carrier** Gaz de France Alstom Chantiers de l'Atlantique 4x 6L50DF Total 58'000 running hours

Viking Energy DF-electric offshore supply vessel Eidesvik Kleven Verft 4x 6R32DF 4x 49'500 running hours

British Fmerald **DF-electric LNG Carrier BP** Shipping Hyundai Heavy Industries 2x 12V50DF + 2x9L50DF Total 54'000 running hours

Stril Pioner DF-electric offshore supply vessel Simon Møkster Kleven Verft 4x 6R32DF 4x 46'500 running hours

Totally 62 contracted dual-fuel engine powered LNG carriers whereof 30 delivered

□ Some Holistic Challenges

Some Holistic Challenges

- Operation flexibility
 - Switching of operational modes when crossing boarder lines of Emission Control Areas
- Exhaust gas temperature from engine
 - High enough for NOR (SCR) operation over a broad load range.
 - Higher the better for waste heat recovery
- Cooling water temperatures
 - Higher the better for waste heat recovery
- Backpressure
 - Engine to allow higher backpressure. Often the inevitable consequence of installing several exhaust gas cleaning devices and boilers in series in the exhaust gas pipe is increased backpressure
- Location of equipment
 - Engine + NOR (SCR) + boiler + Silences +SOx scrubber

Vision: Integrated modules under Development

Wärtsilä pre-fabricated exhaust treatment module lifted into a ship at the yard.

Thank You

for Your Attention!