

Analysis of potentials and costs of CO₂ storage in the Utsira aquifer

The Trondheim CCS Conference 16th of June 2011

Pernille Seljom (Pernille.Seljom@ife.no)
Institute for Energy Technology (IFE)

Outline

- Brief overview of Institute for Energy Technology (IFE)
- Project Description
- Assumptions: Utsira formation
- Energy modelling
 - Scenarios
 - Modelling at a country level
 - Modelling at a regional level
- Project Conclusions

Institute for Energy Technology

- Independent foundation established in 1948
- 650 employees
- Turnover: MNOK 750 (US\$ 130 mill)
- Contract Research
- Internationally oriented
- Energy research lab

JEEP II research reactor, Kjeller

Example: Energy system perseptive

Project description Social Energy Coalition

- A joint research project
 - Coordinator: Institute for Energy Technology IFE (NO)
 - Utrecht University (NL)
 - University College London (UK)
 - Risø DTU (DK)
 - Stuttgart University IER (DE)

Universiteit Utrecht

Project description

- Analysis of CCS focusing on storage in the Utsira formation for the countries around the North Sea (UK, NL, DE, DK, NO) towards 2050
- National and regional analysis with least cost bottom up energy system models (MARKAL and TIMES)

Analysis of barriers, policies for a CO₂-infrastructure in the North

Sea

Energy system model

Input data

Cost data
Efficiencies
Emission factors
Demand
Load curves

Objective function

Minimizing discounted costs

Model equations

Energy and emission balances
Capacity activity constraint
Transformation relationship
Storage equations
Peaking constraint
Load curve equations
Scenario specific constraints

•••••

Output data

Process activities
Energy & emission flows
New capacities
Fundamental prices

Energy system model

- Model assumptions: Utsira aquifer
 - Storage capacity: 42 Gt
 - Maximum annual injection rate:150 Mt/y
 - Investment cost: 22 M€ per 1 Mt/y
- The use of Utsira would depend on
 - Capacity of storage
 - Mitigation strategies
 - Technical development of CCS
 - Public acceptance
 - Legal and policy conditions

Energy system model

- National models and regional model is harmonized
 - Energy, Electricity & CO₂ prices
 - Electricity trade
 - Discount rate
 - Power plants and CO₂ capture technologies
 - CO₂ transport costs
 - Utsira storage option
- National, onshore and offshore, storage options is mapped

Scenarios

- Two core scenarios
 - 20% CO₂ reduction by 2020 and maintained towards 2050 (C-20) in EU+
 - 20% CO₂ reduction by 2020 and reduced to 80% by 2050
 (C-80) in EU+

Sensitivities

- No CCS
- High Utsira capacity, with a maximum injection rate at 500
 Mt CO₂ per year
- No onshore storage
- Lower fossil fuel prices

Modelling at a country level

- Optimising on a national level
- Each country can invest in a pipeline to Utsira
- What is the role of CCS in 2050 with 80 % CO₂ reduction?

CCS in the electricity production mix:

- UK: Coal: 12 %
- NL: Coal/ Bio: 70 % & Gas: 10 %
- DE: Coal: 34 %, Total CCS: 40 %
- DK: Coal CCS plays a minor role
- NO: CCS plays a minor role, mainly capture from industry

Modelling at a country level

Where is CO₂ stored in 2050? C-80

C-80 with lower fossil fuel prices

Modelling at a regional level

Possible transport networks

- Total amount of CO₂ captured in North Europe is indifferent with network layout
- CO₂ quantities to Utsira differ slightly
 - Network III: 8 Mt/y more to Utsira from 2040, mainly from NL

Electricity production North Sea Countries

2050: 38 % CCS and 56 % renewable technologies

CO₂-capture North Sea Countries

2050: ~ 570 Mt CO₂ captured under stringent emission targets

Storage of CO₂ North Sea Countries

2050: 115 Mt CO₂ stored in the Utsira formation (75 Mt UK, 40 Mt NL)

Total CO₂ captured 2050

Project conclusions

- Under a tight climate policy, CCS appears as cost-effective measure for all countries
- European CO₂ mitigation strategies are vital for the importance of storage in the Utsira formation
- The main limitation for the use Utsira is the maximum annual injection rate for CO₂, not its total storage capacity
- CO₂ transport to Utsira is mainly from the UK and NL
- Different infrastructure layouts primary affect the CO₂ stored in Utsira, not the total amount of CO₂ captured

Thank you for your attention!

Final report:

http://www.fenco-era.net/Storage_Utsira

