
Closest Points, Moving Surfaces, and

Algebraic Geometry

Jan B. Thomassen, P̊al H. Johansen, and Tor Dokken

Abstract. This paper presents a method for computing closest

points to a given parametric surface based on “moving surfaces”.

Moving surfaces are implicitly defined objects that allow us to for-

mulate the problem in terms of two univariate polynomial equa-

tions. The idea is to obtain a faster and more reliable method of

computing closest points, compared to conventional methods based

on Newton iterations. We also describe an implementation of our

algorithm which – although not being fast – is very reliable.

§1. Introduction

In this paper, we present a new method for calculating closest points
to a parametric surface. The method is based on algebraic techniques,
in particular on moving surfaces. Moving surfaces are objects that have
previously been used for implicitization [6], but the closest point problem
now provides another application of these.

Recently, there has been renewed interest in exploring links between
geometric modeling and algebraic geometry [5]. The work presented in this
paper is a part of this trend, and extends work from the European Com-
mission project GAIA II (see the Acknowledgements). Algebraic geometry
has many uses in geometric modeling, including such applications as point
classification, implicitization, intersection and self-intersection problems,
ray-tracing, etc. It was therefore natural to ask whether algebraic geom-
etry also can be used in algorithms for computing closest points.

The closest point problem is a generic problem in CAGD. Applications
include surface smoothing, surface fitting, and curve or surface selection.
The closest point problem can be described in the following way. We are
given a parametric surface p(u, v) and a point x0 in space. We want to
find the point pcl on the surface that is closest to x0, or more precisely,
we want to find the parameters (ucl, vcl) of pcl.

The conventional way to compute closest points involves iterative meth-
ods, like Newton’s method, to minimize the distance function from x0 to
a point on the surface. This leads to solving a set of two polynomial

2 Jan B. Thomassen, et al.

equations in u and v,

(x0 − p(u, v)) · pu(u, v) = 0, (1)

(x0 − p(u, v)) · pv(u, v) = 0,

for the footpoints to x0. We recall that a footpoint p to x0 is a point on
the surface such that the vector (x0−p) is orthogonal to the tangent plane
at p. Eqs. (1) express an orthogonality condition: The vector (x0−pcl) is
orthogonal to the tangent vectors pu(ucl, vcl) and pv(ucl, vcl) at the closest
point. This is illustrated in Fig. 1.

pcl
up (u,v)

p (u,v)v

x0

Fig. 1. Orthogonality conditions for the closest point.

One disadvantage of iterative methods is that we need an initial guess.
It is a problem to come up with a good initial guess [3]. A bad guess may
give a sequence of iterations that does not converge, or that converges to
the wrong solution. Furthermore, if a large number of closest points needs
to be computed, the method may be slow.

Another way to solve Eqs. (1) is to use subdivision techniques. An
example of this is Bézier clipping [4]. These methods are often robust
and effective, but may be unstable and use a long time to converge for
some difficult surfaces, like surfaces with singularities. Such methods are
probably the methods of choice in real applications, but we will not discuss
them further here.

The method we propose in this paper for solving the closest point
problem uses moving surfaces, as already mentioned. A moving surface
in our setting is a one-parameter family of surfaces. We construct two
such surfaces: one moving in the u-direction and one moving in the v-
direction. The two moving surfaces give us two polynomial equations that
are univariate. Univariate polynomial equations can be solved fast with
a recursive solver and all roots may be found on the interval of interest
within a predefined accuracy. This will give an algorithm that does not
need any initial guess, has no convergence problems, and is fast when
many closest points are to be calculated.

Closest Points 3

We may use elimination theory and Sylvester resultants to construct
the moving surfaces in our method. From this construction, we obtain
formulas for the algebraic degrees of the geometric objects involved when
the surfaces addressed are Bézier surfaces.

We also describe an implementation of an algorithm for computing
closest points based on the moving surface method. In this implemen-
tation, we construct the moving surfaces by solving a system of linear
equations, rather than by using resultants. The implementation produced
accurate results when run on test cases of biquadratic Bézier surfaces.
Unfortunately, it couldn’t be applied to bicubic surfaces due to memory
shortage when building certain matrices necessary for the construction of
the moving surfaces.

The organization of the paper is the following. In the following sec-
tion, we describe the way we use moving surfaces and the idea behind
our method. In Section 3, we analyze the method by using elimination
theory and Sylvester’s resultant, which gives us formulas for the algebraic
degrees of the moving surfaces in the scheme. In Section 4, we present
an algorithm for our method and describe some results we have obtained
from implementing it. Finally, Section 5 is a discussion of these results.

§2. The Underlying Idea

Our method involves moving surfaces, which have been introduced
by Sederberg for implicitization [6]. In that context, a moving surface
is an implicit surface depending on two parameters, but in our setting
a moving surface is a one-parameter family of implicit surfaces. Let us
make the assumption that we are dealing with parametric surfaces that
are single rational patches. Thus, a moving surface q(x;u), depending on
the parameter u, is given by

q(x;u) =

N
∑

i=0

qi(x)Bi,N (u). (2)

Here, Bi,N (u) are Bernstein basis polynomials of degree N , and qi(x) is
a set of N + 1 algebraic functions. In other words, q is given in terms
of a Bernstein polynomial in u of degree N , where the coefficients qi are
implicit surfaces. Furthermore, the moving surface q follows a surface
p(u, v) (in the parameter u) if

q(p(u, v);u) = 0. (3)

Moving surfaces may in this way follow a parametric surface in either the
u or the v direction.

How can we make use of such moving surfaces? Suppose we find a
moving surface q1(x;u) with the following properties:

4 Jan B. Thomassen, et al.

• q1 follows the given surface p(u, v) in u. This means that the surface
defined by q1(x;u) = 0 intersects p in u-isoparameter curves.

• q1 is orthogonal to p for each u.

• q1 is ruled for each u. More precisely, it is swept out by lines spanned
by the normal n(u, v) along the u-isoparameter curves.

Then, for a given point x0 in space, the equation

q1(x0;u) = 0 (4)

is a univariate equation for the u-parameter of all footpoints to x0. An
example of a moving surface with these properties is shown in Figure 2.
Clearly, we may have a similar moving surface q2 in the v direction. In

p(u,v)

n(u,v)
q1(x0;u)=0

u

v

Fig. 2. A moving surface q1 that intersects p at u-isocurves, is orthogonal
to it, and is ruled.

the following, the subscript 1 or 2 on q refers to either u or v.

A possible exception to this situation is that we are dealing with cer-
tain non-generic surfaces, like surfaces of revolution. For these surfaces
some points (like those lying on the axis of revolution) may give, not foot-

points, but footcurves. I.e. the set of points with the same distance to x0

is a curve on the surface. This is presumably a problem for most methods
of computing closest points, and requires a separate discussion. For sim-
plicity we assume that all the surfaces we consider are sufficiently generic
for this to happen.

Based on the considerations above, we propose a method for computing
closest points in two steps:

1. Preprocessing. Construct two moving surfaces: q1 for the u-direction,
and q2 for the v-direction. This is done once for each surface.

Closest Points 5

2. For each given point x0, use the two moving surfaces to get two
univariate equations in u and v:

q1(x0;u) = 0, (5)

q2(x0; v) = 0.

Check each pair of solutions (u, v) to these equations, along with
the closest point on the border, to find which one corresponds to the
closest point.

Finding the closest point on the border amounts to running a similar
algorithm for the four border curves.

A sketch of a situation where we get a solution u0 and v0 from Step 2
is shown in Figure 3.

pcl

(;vq2 x0 0)=0

x0

(;uq1 x0 0)=0

pv(u0;v0)

pu(u0;v0)

Fig. 3. When the solutions u0 and v0 are found in Step 2, we can draw
the moving surfaces for these two parameter values. The point x0, the
closest point pcl, and the straight line between them, lie on both of these
surfaces.

Let us also make a remark about curves. A similar construction works
for curves, both in 2D and 3D. In 2D we have moving lines, while in 3D
we have moving planes. Since lines and planes are described implicitly
by algebraic functions that are linear, the algorithms become simpler.
Furthermore, for curves there is only one equation in Step 2. This equation
is in fact equivalent to the orthogonality condition (x0 − p(t)) · p′(t) = 0.

§3. Degrees of the Moving Surfaces

The two moving surfaces described in the previous section can be an-
alyzed more formally. In this section we will use elimination theory, in
particular Sylvester’s resultant, to perform this analysis [1]. We will as-
sume that the surface p is a single polynomial patch, i.e. a Bézier patch.

6 Jan B. Thomassen, et al.

In this case we obtain formulas for the algebraic degrees involved in q1

and q2 given a parametric surface of bidegree (nu, nv). Referring back to
the form (2) of a moving surface, the required degrees are:

d1 ≡ deg
x
(q1) = the degree of q1 (or q1,i) in x

d2 ≡ deg
x
(q2) = the degree of q2 (or q2,i) in x

N ≡ degu(q1) = the degree of q1 (or Bi,N) in u

It turns out that degu(q1) is equal to degv(q2) so we need only one N . This
is connected with the fact that N counts the number of possible footpoints,
and this is given by the number of roots of q1 and q2, respectively.

Thus we have a parameterized surface p : R
2 → R

3, where p is given by
three polynomials p1, p2, p3 ∈ R[u, v] of degree (nu, nv). We assume that
this description of the surface is sufficiently general, so that the degrees
cannot be reduced. Now let V be the set of points (u, v,x) ∈ R × R × R

3

such that x is on the normal of p given by the parameter values (u, v).

The set V is described by the two equations

F1(u, v,x) := (x − p) · pu = 0, (6)

F2(u, v,x) := (x − p) · pv = 0.

The points satisfying these equations make a variety in R
5.

Using a resultant, we can eliminate one variable, and get one polyno-
mial defining a hypersurface in R

4. If we eliminate u, this set of points
is exactly the set V ′ = {(v,x) ∈ R × R

3 | ∃u ∈ R s.t. F1(u, v,x) =
F2(u, v,x) = 0}, which corresponds to the moving surface q2.

We want to determine the degrees in v and x of the equation defining
V ′. First, we write

F1(u, v,x) =

2nu−1
∑

i=0

fi(v,x)ui, (7)

F2(u, v,x) =

2nu
∑

i=0

gi(v,x)ui,

and then use the Sylvester resultant to eliminate u. By examining the
Sylvester matrix, we can determine the degrees of the equation defining
V ′. The Sylvester matrix is a square matrix of size (4nu − 1)× (4nu − 1).

Closest Points 7

It looks like this:

f0 0 · · · 0 g0 · · · 0
f1 f0 · · · 0 g1 · · · 0
...

...
. . .

...
...

. . .
...

f2nu−1 f2nu−2 · · · f0 g2nu−1 · · · g1

0 f2nu−1 · · · f1 g2nu
· · · g2

...
...

. . .
...

...
. . .

...
0 0 · · · f2nu−1 0 · · · g2nu

There are 2nu columns to the left, and the degree in v is 2nv for each
of these entries. There are 2nu − 1 columns to the right, each entry being
of degree 2nv − 1. The total degree in v of the resultant is thus

N = 4nunv + (2nu − 1)(2nv − 1). (8)

Note the symmetry of this expression with respect to nu and nv, which
confirms what we said previously about needing only one N .

The degree in x, that is, d2, is a little trickier to work out. The polyno-
mials f0, . . . , fnu−1 are of degree 1 in x, but the polynomials fnu

, . . . , f2nu−1

are of degree 0. Furthermore, the polynomials g0, . . . , gnu
are of degree 1

and the polynomials gnu+1, . . . , g2nu
are of degree 0 in x. This means that

the bottom nu rows are of degree 0 in x and the rest of the 3nu − 1 rows
are of degree 1. The total degrees are therefore

d1 = 3nv − 1, (9)

d2 = 3nu − 1. (10)

As mentioned, the degree formulas for d1,2 and N are derived for gen-
eral parametrized surfaces, and as such are upper bounds. For some sur-
faces the degrees could be effectively lower. This happens, for example,
if the degree of p is artificially high, so it can be obtained from a degree
elevation of a lower-degree parametrization. The degree can drop in other
cases, but if the degree in v drops, then the corresponding degree in u will
typically drop in the same way. For this reason, there will still be only
one N .

A similar analysis can be carried out for rational surface patches. The
degree formulas are then:

N = 9nunv + (3nu − 2)(3nv − 2)

d1 = 4nv − 2 (11)

d2 = 4nu − 2

Examples of the degrees for Bézier and rational surfaces of degrees
(n, n) with n ranging from 1 to 4 is shown in Table 1. As far as we know,

8 Jan B. Thomassen, et al.

Bézier Rational
(1, 1) (2, 2) (3, 3) (4, 4) (1, 1) (2, 2) (3, 3) (4, 4)

d1,2 2 5 8 11 2 6 10 14
N 5 26 61 113 10 52 130 244

Tab. 1. Degrees for Bézier and rational surfaces of degrees of the form
(n, n). Since nu = nv we also have d1 = d2.

these results are new1. The numbers d1 and d2 are the degrees of an
algebraic surface that is perpendicular to a parametric surface along an
entire isocurve, and this has not been noted before.

§4. Implementation of a Test Algorithm

To test our ideas, we have implemented an algorithm for computing
closest points for tensor product Bézier surfaces. We have chosen not
to use resultants for this. Instead we rely on solving a system of linear
equations, which will be explained below. The reason is that this is a
numerically very stable method, which allows us to use the Bernstein
form for all polynomials in a straightforward way, which would not have
been the case for resultant based methods. Besides, we do not get into
possible problems with base points.

A central object in our implementation is the “moving ruled surface”

r(u, v, w) = p(u, v) + wn(u, v), (12)

where p is the given surface, n is the normal vector, and w is an additional
parameter. This can be thought of as a trivariate tensor product Bézier
object. For fixed (u0, v0), the line r(u0, v0, w), w ∈ R, is orthogonal to the
surface at p(u0, v0). In other words, all points on this line has p(u0, v0)
as a footpoint.

Another property we have used in our implementation, is that evalu-
ating an algebraic function q(x) on an n-variate Bernstein tensor polyno-
mial r(u1, . . . , un) yields a new n-variate Bernstein tensor polynomial. If
we write q(x) =

∑

j bjx
j , where j is a multi-index, xj is a monomial in

(x, y, z) in multi-index form, and bj are the coefficients, we have a factor-
ization

q(r(u1, . . . , un)) = bT DT B(u1, . . . , un). (13)

Here, b is the coefficients bj organized in a vector, D is a matrix of num-
bers, and B(u1, . . . , un) is a basis of n-variate Bernstein tensor polyno-
mials, also organized in a vector. If q is a degree d algebraic function

1We thank the referee for urging us to make this point.

Closest Points 9

and r is a degree (m1, . . . ,mn) Bernstein polynomial, then q(r) is a de-
gree (dm1, . . . , dmn) Bernstein polynomial. In our implementation, we
use evaluation routines for algebraic functions on Bernstein polynomials
in order to find such matrix factorizations.

The moving surfaces q1 and q2 are defined by an array of coefficients.
For q1(x;u) we need to determine the coefficients b1,i;j of q1,i(x) =

∑

j b1,i;jx
j ,

see Eq. (2). This means that we can use numerical linear algebra to find
the vector b1 of coefficients in q1 More precisely, we need to find a vector
in the null-space of D1. We used a technique based on Gauss elimina-
tion and back-substitution for this, which is faster than, say, SVD of D1.
This way of using numerical linear algebra has previously been used in
implicitization, see [2].

The algorithm follows the two-step structure described in Section 2.

Step 1. Preprocessing

Input: A parametric surface p(u, v).

1. Construct a “moving ruled surface” r(u, v, w)

2. Insert r into q1 to get the equation q1(r(u, v, w), u)) = 0. This
can be factored into the linear equation

BT (u, v, w)D1b1 = 0, (14)

where b1 is the vector of coefficients in q1,i. Similarly for the
v-direction.

3. Solve the matrix equation D1b1 = 0 by e.g. Gauss elimination
and back-substitution. Similarly for the v-direction.

Output: The vectors b1 and b2, or equivalently, the moving surfaces
q1 and q2.

Step 2. For each given point x0

Input: A point x0 in space.

1. Find the closest point on the boundary curves.

2. Insert x0 in q1 and q2 to get univariate equations in u and v:

q1(x0;u) = 0, (15)

q2(x0; v) = 0.

3. Find all roots ui and vj .

4. Check each pair (ui, vj) and the closest point on the boundary
to find the closest point.

Output: The parameters (ucl, vcl) of the closest point pcl.

10 Jan B. Thomassen, et al.

Moving surfaces Newton’s method
Average no. of hits 413 374

Running times
Full algo. ∼ 1 − 2 min
Just Step 2 ∼ 1 s

∼ 5 s

Accuracy ∼ 10−7 ∼ 10−13

Tab. 2. Average results for running the two closest point algorithms on
ten random biquadratic surfaces. For details, see the text.

As an example, we tested the algorithm on a set of ten random bi-
quadratic Bézier surfaces. That is, the control points were random points
in the unit cube. We expect that within the family of biquadratic surfaces
such surfaces will be a challenge for any closest point algorithm. For each
surface, 1000 points were generated randomly in the bounding box, and
their closest points on the surface were computed. However, points whose
closest points were found to lie on the boundary were discarded. For com-
parison, we also implemented an algorithm based on Newton’s method.
We used a PC with two Intel Pentium 4 2.8GHz processors to run these
algorithms. The results are shown in Table 2.

Table 2 reports the average number of closest points found (hits) for
each surface. For both algorithms, less than half of the 1000 random points
gave hits because a majority of the closest points were on the boundaries
of the surfaces. (The surfaces had complicated geometries with lots of
self-intersections.) The moving surfaces algorithm was consistently better
for getting hits – Newton’s method produced a lot of messages for “No
convergence”.

Running times were considerably longer for the full moving surfaces
algorithm, with 1 − 2 minutes. Most of this time is spent in the prepro-
cessing step where the moving surfaces are constructed. When only Step
2 of the algorithm is considered it is much faster.

Finally, the accuracy given in Table 2 is an average of the errors for the
reported closest points. The averaging is over the order of magnitude of the
errors, i.e. it is an average of the log of the errors for each point. An error
for a single point was defined in terms of the angle θ between the vector
(x0 − pcl) and the normal n(ucl, vcl) at the computed closest point, see
Figure 4. As we can see, Newton’s method produced much better accuracy
than the moving surfaces. Sources of error for the moving surfaces method
are the building of the matrix D, the Gauss elimination, the insertion of
x0 to get the polynomial equations, and the solving of these equations.
The results in Table 2, however, does not include iterative refinements.

Looking into the details for each surface – not shown in Table 2 – it
turns out that there is a complementary property for the two algorithms:

Closest Points 11

n(u ,v)cl cl

pcl

x0

θ

Fig. 4. The error can be measured by the angle θ between the normal n

at pcl and the vector to the point x.

Surfaces that had a low accuracy for moving surfaces also had a high
number of hits. For example, one random surface had an accuracy of
10−5 vs. 10−13 for moving surfaces and Newton’s method, respectively,
while the hit numbers were 265 vs. 193.

It is necessary to make some remarks about problems with the mem-
ory usage of our implementation of the moving surfaces algorithm. The
amount of memory needed for the matrix D1 (or D2) was about 350
Mbytes for the biquadratic surface. This is a lot, but does not cause any
problems. For a bicubic Bézier surface, however, the corresponding mem-
ory requirement is about 4 Gbytes with double precision! But even going
to single precision was too much to handle for our PCs.

§5. Discussion

Moving surfaces provides a new method for computing closest points
to a parametric surface. It is an alternative to the conventional algorithms
based on iterations and Newton’s method, or to subdivision methods.

Compared to a Newton based closest point algorithm, it takes a long
time to set up the system of moving surfaces for each parametric surface,
but a short time to compute the closest point once a point in space is
given. This suggests that the potential use of the moving surfaces method
is for situations where a large number of closest points are to be computed
for each given surface, and where long preprocessing times are acceptable.

Furthermore, the moving surfaces method is better than Newton’s
method for actually finding the closest points for surfaces with complex
geometry. Thus, if this kind of stability is desired, the moving surfaces
method may also be a better choice, combined with an iterative refinement
of the resulting closest points. In other words, the closest points found
from the moving surfaces method could be used as the starting point of
the Newton iterations.

12 Jan B. Thomassen, et al.

However, we had problems with the implementation of the algorithm,
due to memory shortage, when applied on the realistic case of bicubic
surfaces. The large amount of memory is mainly used for building the
matrices D1 and D2. In contrast, the amount of memory needed for
storing the moving surfaces themselves corresponds to only (N +1)(d1,2 +
1)(d1,2 + 2)(d1,2 + 3)/6 doubles (i.e. the dimensions of the vectors b1 and
b2, respectively. In the bicubic case this number is 10230. This shows that
we must find another way of implementing the algorithm, or that we must
find a way to use moving surfaces together with approximations. But if
we can afford the preprocessing of the coefficients of the moving surfaces
we can get fast and accurate calculations of closest points.

Acknowledgments This work was supported by the European Com-
mission project GAIA II, IST-2001-35512

§6. References

1. Cox, D., J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms,
Second Edition, Springer-Verlag, New York, 1996.

2. Dokken, Tor, and J. B. Thomassen, Overview of Approximate Implici-
tization, in [5].

3. Ma, Y. L., and W. T. Hewitt, Point Inversion and Projection for
NURBS Curve and Surface: Control Polygon Approach, Comput.
Aided Geom. Design 20 (2003), 79–99.

4. Nishita, T., T. W. Sederberg, and M. Kakimoto, Ray Tracing Trimmed
Rational Surface Patches, Computer Graphics 24, 1990, 337–345.

5. Topics in Algebraic Geometry and Geometric Modeling, proceedings of
a workshop in Vilnius, Lithuania 2002, R. Goldman and R. Krasauskas
(eds.), Contemporary Mathematics, Vol. 334, 2003.

6. Sederberg, T. W., and F. Chen, Implicitization using Moving Curves
and Surfaces, in Computer Graphics (SIGGRAPH 95 Conference Pro-
ceedings), ed. R. Cook, Vol. 29, pp. 301–308, Addison–Wesley 1995.

Jan B. Thomassen and P̊al H. Johansen
Centre of Mathematics for Applications
P.O. Box 1053 Blindern
NO–0316 Oslo
NORWAY
jan.b.thomassen@cma.uio.no

hermunn@math.uio.no

http://www.cma.uio.no

Closest Points 13

Tor Dokken
SINTEF ICT
P.O. Box 1024 Blindern
NO–0314 Oslo
NORWAY
Tor.Dokken@sintef.no

http://www.math.sintef.no

