Seasonal hydropower scheduling using linear decision rules

Knut Hjertvik Simen Braaten

Agenda

- LDR approximation vs scenarios
- Modelling considerations
- Description of benchmarking
- How does LDR perform?
- Analysis of results
- Uncertainty modelling
- Mathematical transformations
- How head was included
- How water values was calculated

Problem and solution method

- Seasonal Hydro Power Planning Problem
 - Weekly resolution
 - Uncertainty in price and inflow
 - Plan power generation, pumping, bypass
 - For input to short-term models
- Linear Decision Rules
 - Affine reaction functions

$$\max \qquad T^{H} \sum_{t \in \mathcal{T}} \beta_{t} \pi_{t} \sum_{r \in \mathcal{R}} \sum_{d \in \mathbb{D}} E^{d}_{rt} x^{d}_{rt}$$

s.t. $m_{r0} = M^{0}_{r} \qquad r \in \mathcal{R}$

$$m_{rt} = m_{r(t-1)} + F_{rt} + T^{S} \sum_{d \in \mathbb{D}} \left(\sum_{\rho \in \mathbb{C}_{r}^{d}} x_{\rho t}^{d} - x_{rt}^{d} \right) \qquad r \in \mathcal{R}, t \in \mathcal{T}$$

$$\underline{M}_{rt} \le m_{rt} \le \overline{M}_{rt} \qquad r \in \mathcal{R}, t \in \mathcal{T}$$

$$L_{rt}^{q} \leq E_{rt}^{q} x_{rt}^{q} \leq U_{rt}^{q} \qquad r \in \mathcal{R}, t \in \mathcal{T}$$

$$L_{rt}^{p} \leq E_{rt}^{p} x_{rt}^{p} \leq U_{rt}^{p} \qquad r \in \mathcal{R}, t \in \mathcal{T}$$

$$\underline{D}_{rt} \le x_{rt}^{q} + C_{rt}^{B} \le \overline{D}_{rt} \qquad r \in \mathcal{R}, t \in \mathcal{T}$$

 $x_{rt}^s \ge 0 \qquad \qquad r \in \mathcal{R}, t \in \mathcal{T}$

Problem and solution method

- Seasonal Hydro Power Planning Problem
 - Weekly resolution
 - Uncertainty in price and inflow
 - Plan power generation, pumping, bypass
 - For input to short-term models
- Linear Decision Rules
 - Affine reaction functions
 - Policy: Intercept + slope

LDR approximation

Modelling considerations 1 Zero-mean uncertainty

Modelling considerations 2 Memory sets

- On what time periods can the decisions react?
- Solution time vs. optimality gap
- Smart memory sets

Benchmarking Description of test case

Benchmarking Description of testing

Solution methods

- Linear Decision Rules (LDR)
 - Different memory sets
- Rolling Intrinsic (RI)
- Dual Upper Bound (DUB)
- Simulated policies on 3000 scenarios

- Computing time
 - Different memory sets
 - Compared to RI
- Solution quality
 - Optimality gap
- Why?

$$\mathbf{x}(\delta) = \mathbf{\hat{x}} + K^x \delta$$

Dowel

• Linear Decision Rules

- *Linear* Decision Rules
- Further research
 - Piecewise Linear Decision Rules
 - Historically based memory sets

Conclusion

- Know the strengths of LDR
 - Swift on smaller memory sets
 - Potential in piece-wise LDR
- Be aware of the limitations of LDR
 - Loss of optimality
 - Linearity of model

Thank you!

Our master thesis: https://daim.idi.ntnu.no/masteroppgave?id=13112

Questions or other inquiries? Send me an email at Knut.Hjertvik@powel.com

Knut Hjertvik +47 908 44 997

Attachements

17 INTRODUCTION

Heat maps

Figure 4: Optimal slope matrix for discharge from reservoir M6

18 INTRODUCTION

Inclusion of head corrections

(a) Reservoir trajectories M6 prior to head corrections

(b) Reservoir trajectories M6 after head corrections

Inclusion of uncertainty

- Uncertainty polytope
 - Box Uncertainty
 - Budgeted Uncertainty sets

20 INTRODUCTION

Mathematical transformation

 $T^{H} \sum_{t \in \mathcal{T}} \beta_{t} \pi_{t} \sum_{r \in \mathcal{R}} \sum_{d \in \mathbb{D}} E^{d}_{rt} x^{d}_{rt}$ max (1) s.t. $m_{r0} = M_r^0$ $r \in \mathcal{R}$ (2) $m_{rt} = m_{r(t-1)} + F_{rt} + T^{S} \sum_{d \in \mathbb{D}} \left(\sum_{\rho \in \mathbb{C}^{d}} x_{\rho t}^{d} - x_{rt}^{d} \right) \qquad r \in \mathcal{R}, t \in \mathcal{T}$ (3) $\underline{M}_{rt} \leq m_{rt} \leq \overline{M}_{rt}$ $r \in \mathcal{R}, t \in \mathcal{T}$ (4) $L_{rt}^q \leq E_{rt}^q x_{rt}^q \leq U_{rt}^q$ $r \in \mathcal{R}, t \in \mathcal{T}$ (5) $L_{rt}^p \leq E_{rt}^p x_{rt}^p \leq U_{rt}^p$ $r \in \mathcal{R}, t \in \mathcal{T}$ (6) $\underline{D}_{rt} \le x_{rt}^q + C_{rt}^B \le \overline{D}_{rt}$ $r \in \mathcal{R}, t \in \mathcal{T}$ (7)

 $x_{rt}^s \ge 0 \qquad \qquad r \in \mathcal{R}, t \in \mathcal{T}$ (8)

$$\hat{x}_{rt}^{q} + \sum_{u \in \mathbb{U}} \sum_{\tau \in \mathcal{M}_{t}^{u}} K_{rt\tau u}^{q} \delta_{u\tau} \leq \frac{U_{rt}^{q}}{E_{rt}^{q}}, \quad r \in \mathcal{R}, t \in \mathcal{T}, \delta \in \mathcal{U}.$$

$$\max_{\delta} \left\{ \sum_{u \in \mathbb{U}} \sum_{\tau \in \mathcal{M}_{t}^{u}} K_{rt\tau v}^{q} \delta_{u\tau} \\ s.t. \sum_{u \in \mathbb{U}} \sum_{\tau \in \mathcal{T}} H_{ju\tau} \delta_{u\tau} \leq h_{j}, \quad \forall j : \mu_{rtj}^{Uq} \right\} \leq \frac{U_{rt}^{q}}{E_{rt}^{q}} - \hat{x}_{rt}^{q} \qquad r \in \mathcal{R}, t \in \mathcal{T}$$

$$\min_{\mu^{Uq}} \left\{ \begin{array}{l} \sum_{j} h_{j} \mu_{rtj}^{Uq} \\ s.t. \sum_{j} H_{ju\tau} \mu_{rtj}^{Uq} = K_{rt\tau\nu}^{q}, \quad u \in \mathbb{U}, \tau \in \mathcal{M}_{t}^{u} \quad : \delta_{u\tau} \\ \sum_{j} H_{ju\tau} \mu_{rtj}^{Uq} = 0, \quad u \in \mathbb{U}, \tau \notin \mathcal{M}_{t}^{u} \quad : \delta_{u\tau} \\ \mu_{rtj}^{Uq} \ge 0, \quad \forall j \end{array} \right\} \leq \frac{U_{rt}^{q}}{E_{rt}^{q}} - \hat{x}_{rt}^{q} \qquad r \in \mathcal{R}, t \in \mathcal{T}.$$

$$\begin{split} \sum_{j} h_{j} \mu_{rtj}^{Uq} &\leq \frac{U_{rt}^{q}}{E_{rt}^{q}} - \hat{x}_{rt}^{q}, \quad r \in \mathcal{R}, t \in \mathcal{T} \\ \sum_{j} H_{ju\tau} \mu_{rtj}^{Uq} &= K_{rt\tau\upsilon}^{q}, \quad r \in \mathcal{R}, t \in \mathcal{T}, u \in \mathbb{U}, \tau \in \mathcal{M}_{t}^{u} \\ \sum_{j} H_{ju\tau} \mu_{rtj}^{Uq} &= 0, \quad r \in \mathcal{R}, t \in \mathcal{T}, u \in \mathbb{U}, \tau \notin \mathcal{M}_{t}^{u} \\ \mu_{rtj}^{Uq} \geq 0, \quad r \in \mathcal{R}, t \in \mathcal{T}, j. \end{split}$$

