Integrating Variable Wind Power Using a Hydropower Cascade

Andrew Hamann and Gabriela Hug Power Systems Laboratory, ETH Zürich

18 September 2015

5th International Workshop on Hydro Scheduling in Competitive Electricity Markets Trondheim, Norway

Motivation

- Hydropower is an enormously flexible resource
- Capable of deploying stored water energy very quickly
- Fewer start-up and shut-down restrictions than thermal power plants
- Renewable (but not necessarily environmentally friendly)
- How much flexibility can hydropower provide in real-time operations for balancing the variability from wind power?
- How do the operations of a coordinated wind-hydro system differ from those of a hydro-only system?

Motivation

- Hydropower is an enormously flexible resource
- Capable of deploying stored water energy very quickly
- Fewer start-up and shut-down restrictions than thermal power plants
- Renewable (but not necessarily environmentally friendly)
- How much flexibility can the Mid-Columbia hydropower system provide in real-time operations for balancing the variability from wind power in the Pacific Northwest?
- How do the operations of a coordinated wind-hydro system differ from those of a hydro-only system?

Mid-Columbia System

Mid-Columbia System

	Name	Туре	Head (m)	MW
1	Grand Coulee	Federal	100	6809
2	Chief Joseph	Federal	53	2069
3	Wells	Municipal	21	774
4	Rocky Reach	Municipal	27	1300
5	Rock Island	Municipal	13	629
6	Wanapum	Municipal	23	1038
7	Priest Rapids	Municipal	23	956

We have one year of timestamped data for this system, with a temporal resolution of five minutes

Wind Power in the Pacific Northwest

Source: BPA

 $\mathbf{x}(k+1) = A \cdot \mathbf{x}(k) + B \cdot \mathbf{u}(k)$ for k = 0, 1, ..., K-1

- System model is developed to predict the response of the system x to a sequence of control inputs u
- The system is optimized over a time-horizon k = 0, 1, ..., K
- The control sequence that gives the best performance over the time-horizon is computed
- Only the first-step of this control sequence is applied
- The reaction of the system is observed and the process is repeated at the next time-interval

Modeling: Hydraulic Model

- State variables: reservoir elevation, tailrace elevation
- Control variables: turbine discharge, spill, natural inflow/sideflow
- Reservoir elevation is a linear function of inflows and outflows
 - Surface area assumed to be constant
 - Storage is only sufficient for a few hours of operation
 - Run-of-river with some flexibility
- Tailrace elevation is a function of turbine discharge, spill, and downstream forebay elevation (i.e., encroachment)
 - Tailrace elevation changes more than forebay elevation
- Travel time of water between plants is considered
 - Tens of minutes
- Constraints on turbine discharge, spill, forebay elevation, change in turbine discharge, change in spill

Modeling: Hydropower Generation

$$p(q,h) = \kappa \cdot \eta_t(q) \cdot \eta_g(q) \cdot q \cdot h$$

Modeling: Hydro Power Balance

$$\sum_{j=1}^{J} p_j(k) + \epsilon(k) = p_{\text{hydroload}}(k) + p_{\text{windload}}(k) - p_{\text{wind}}(k)$$

- ε is wind curtailment if negative
- ε is load curtailment if positive
- *p*_{wind} is wind generation
- *p*_{windload} is additional wind load
- We use BPA wind generation data for p_{wind} and BPA balancing area load data for p_{windload} scaled such that...

$$\sum_{n=1}^{N} p_{\text{windload}} = \sum_{n=1}^{N} p_{\text{wind}}$$

$$\min_{q_j, s_j, \epsilon} \left\{ \sum_{k=0}^{K-1} \sum_{j=1}^J \left[a_j \cdot q_j(k)^2 + c_j \cdot s_j(k)^2 \right] + \sum_{k=0}^{K-1} d \cdot \epsilon(k)^2 \right\}$$
$$a_j = c_j = \left(\frac{\eta_j}{\eta_{j+1}} \cdot \frac{\Psi_{j+1}}{\Psi_j} \right)^2 \qquad d \gg a_j$$

- Weight turbine discharge and spill to encourage the transfer of water from large surface area reservoirs to small surface area reservoirs
- Choose the weight d on e large to put a heavy penalty on load or wind curtailments

Case Study: 120 Hours in July 2012

Load curtailment when wind generation was low and hydro hit its upper capacity limit

Case Study: 120 Hours in July 2012

Case Study: 120 Hours in July 2012

Case Study: Statistics

- 4884 MW_{avg} of load
- 2874 MW_{avg} of hydro generation
- ▶ 1664 MW_{avg} of wind generation
- ▶ 346 MW_{avg} of load curtailment
- 357 MW_{avg} of spilled water
- 5396 MW peak load and 3838 MW peak wind generation
- 34% wind energy penetration
- 71% wind capacity penetration

Case Study: Ramping

		Ramping Score			
j	Name	Hist.	Hydro	H+W	
1	Wells	9.3	7.8	24.3	
2	Rocky Reach	9.4	17.0	26.6	
3	Rock Island	6.6	5.6	31.3	
4	Wanapum	10.9	2.9	15.5	
5	Priest Rapids	21.6	6.0	13.9	

Ramping score is proportional to the sum of the absolute change in the turbine discharge

Future Work

- Apply this framework across different hydraulic conditions, system constraints, and wind/load scenarios
- What are the appropriate metrics? Ramping, unit cycling, spilled water energy, spilled wind energy, etc.?
- What should the additional load from wind look like? Should it be normal load, hourly blocks, on-peak blocks, off-peak blocks?
- Should thermal power plants be modeled?
- What does it mean when we say that we want to balance wind using hydropower? What are the best evaluation metrics?

Electric Power Research Institute (EPRI)

Hydro Fellowship, Hydro Research Foundation (2013-2014)

Robert W. Dunlap Graduate Fellowship, Steinbrenner Institute for Environmental Education and Research (2013-2014)

Department of Engineering and Public Policy, Carnegie Mellon University

Bertucci Graduate Fellowship, Carnegie Mellon University (Spring 2013)

Thank you!

