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Motivation

I Hydropower is an enormously flexible resource
I Capable of deploying stored water energy very quickly
I Fewer start-up and shut-down restrictions than thermal power
plants

I Renewable (but not necessarily environmentally friendly)
I How much flexibility can hydropower provide in real-time
operations for balancing the variability from wind power?

I How do the operations of a coordinated wind-hydro system
differ from those of a hydro-only system?
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Motivation

I Hydropower is an enormously flexible resource
I Capable of deploying stored water energy very quickly
I Fewer start-up and shut-down restrictions than thermal power
plants

I Renewable (but not necessarily environmentally friendly)
I How much flexibility can the Mid-Columbia hydropower system
provide in real-time operations for balancing the variability
from wind power in the Pacific Northwest?

I How do the operations of a coordinated wind-hydro system
differ from those of a hydro-only system?
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Mid-Columbia System

Bonneville

The
Dalles

John 
Day

McNary

Ice Harbor

Little
Goose

PriestRapids

Lower
MonumentalWanapum

Rock
Island

Rocky
Reach

Wells

Chief
Joseph

Grand
Coulee

Mica

Duncan

Libby

Noxon

Hungry
Horse

Lower
Granite

Hells
Canyon

Oxbow

Brownlee

Boise
Projects

Jackson
Lake

Portland

Seattle

W
illa

m
ette

R
.

Albeni
Falls

Sn
ak
e
R
.

Washington

Oregon

Idaho

Montana

Canada

U.S.

C
o

lu
m
bia

R.

Hugh
Keenleyside

Kootenay
Lake

Flathead
LakePend Oreille

Lake

Dworshak

Palisades

Sna
ke R.

Arrow

Corps of Engineers Dams

Dams Owned by Others

Bureau of Reclamation Dams

3

Source: Army CoE



Mid-Columbia System

Name Type Head (m) MW

1 Grand Coulee Federal 100 6809
2 Chief Joseph Federal 53 2069
3 Wells Municipal 21 774
4 Rocky Reach Municipal 27 1300
5 Rock Island Municipal 13 629
6 Wanapum Municipal 23 1038
7 Priest Rapids Municipal 23 956

We have one year of timestamped data for this system, with a
temporal resolution of five minutes
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Wind Power in the Pacific Northwest
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Modeling: Model Predictive Control

x(k+ 1) = A · x(k) + B · u(k) for k = 0, 1, ...,K − 1

I System model is developed to predict the response of the
system x to a sequence of control inputs u

I The system is optimized over a time-horizon k = 0, 1, ...,K
I The control sequence that gives the best performance over the
time-horizon is computed

I Only the first-step of this control sequence is applied
I The reaction of the system is observed and the process is
repeated at the next time-interval
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Modeling: Hydraulic Model

I State variables: reservoir elevation, tailrace elevation
I Control variables: turbine discharge, spill, natural
inflow/sideflow

I Reservoir elevation is a linear function of inflows and outflows
I Surface area assumed to be constant
I Storage is only sufficient for a few hours of operation
I Run-of-river with some flexibility

I Tailrace elevation is a function of turbine discharge, spill, and
downstream forebay elevation (i.e., encroachment)

I Tailrace elevation changes more than forebay elevation
I Travel time of water between plants is considered

I Tens of minutes
I Constraints on turbine discharge, spill, forebay elevation,
change in turbine discharge, change in spill
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Modeling: Hydropower Generation

p(q, h) = κ · ηt(q) · ηg(q) · q · h
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Figure 10: Diagram of a piecewise linear HPF

This function corresponds to the lower limit for the auxiliary variable qij , or

qi,min
j (hj) ≤ qij . (18)

Ideally, for a particular turbine discharge qj , only one auxiliary variable qij will not be tight to

either its upper or lower boundary. The upper limit for qij is thus

qij ≤

⎧
⎨

⎩
qi,min
j (hj), qi−1

j < qi,min
j (hj)

qi+1,min
j (hj), qi−1

j = qi,min
j (hj)

. (19)

In effect, constraint (19) maintains the ordering of the piecewise linear function. This idea is one

of the standard precepts of any piecewise linearization. However, this is also the attribute that

makes piecewise linear functions difficult to integrate into linear or quadratic optimization

problems, because constraint (19) is obviously non-linear. I am thus forced to rewrite (19) as a

linear constraint

qij ≤ qi+1,min
j (hj). (20)

How I adapt to this approximate constraint will be discussed in Section 5.

12
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Modeling: Hydro Power Balance

∑J
j=1 pj(k) = phydroload(k)
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Modeling: Wind power

∑J
j=1 pj(k) + ϵ(k) = phydroload(k) + pwindload(k) − pwind(k)

I ϵ is wind curtailment if negative
I ϵ is load curtailment if positive
I pwind is wind generation
I pwindload is additional wind load
I We use BPA wind generation data for pwind and BPA balancing
area load data for pwindload scaled such that...

∑N
n=1 pwindload =

∑N
n=1 pwind
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Modeling: Objective function

minqj,sj,ϵ
{∑K−1

k=0
∑J

j=1

[
aj · qj(k)2 + cj · sj(k)2

]
+
∑K−1

k=0 d · ϵ(k)2
}

aj = cj =
(

ηj
ηj+1

· Ψj+1
Ψj

)2
d≫ aj

I Weight turbine discharge and spill to encourage the transfer of
water from large surface area reservoirs to small surface area
reservoirs

I Choose the weight d on ϵ large to put a heavy penalty on load
or wind curtailments
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Case Study: 120 Hours in July 2012
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Case Study: 120 Hours in July 2012
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Case Study: 120 Hours in July 2012
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Case Study: Statistics

I 4884 MWavg of load
I 2874 MWavg of hydro generation
I 1664 MWavg of wind generation
I 346 MWavg of load curtailment
I 357 MWavg of spilled water
I 5396 MW peak load and 3838 MW peak wind generation
I 34% wind energy penetration
I 71% wind capacity penetration
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Case Study: Ramping

Ramping Score
j Name Hist. Hydro H+W

1 Wells 9.3 7.8 24.3
2 Rocky Reach 9.4 17.0 26.6
3 Rock Island 6.6 5.6 31.3
4 Wanapum 10.9 2.9 15.5
5 Priest Rapids 21.6 6.0 13.9

Ramping score is proportional to the sum of the absolute change in
the turbine discharge
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Future Work

I Apply this framework across different hydraulic conditions,
system constraints, and wind/load scenarios

I What are the appropriate metrics? Ramping, unit cycling,
spilled water energy, spilled wind energy, etc.?

I What should the additional load from wind look like? Should it
be normal load, hourly blocks, on-peak blocks, off-peak blocks?

I Should thermal power plants be modeled?
I What does it mean when we say that we want to balance wind
using hydropower? What are the best evaluation metrics?
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Questions?

Thank you!
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