

NORWAY AS A BATTERY FOR THE FUTURE EUROPEAN POWER SYSTEM – COMPARISON OF TWO DIFFERENT METHODOLOGICAL APPROACHES

-1-

PhD/Research scientist Ingeborg Graabak (SINTEF Energy Research), Stefan Jaehnert (SINTEF Energy Research), Magnus Korpås (NTNU) and Birger Mo (SINTEF Energy Research)

OUTLINE

- Background
- Objective
- The EMPS and the SOVN model
- Main assumptions
- Results
- Conclusions

Background

- EU aims to reduce greenhousegas emissions by 80-95% by 2050 compared to 1990
- Variable wind and solar power production will probably constitute a large share of the future electricity system
- Norway has nearly half of the hydropower storage capacity in Europe: ca 84 TWh

Inflow, demand and power production Norway 2014

- Hydropower covers about 96% of annual demand
- Depletion period in the winter
- Filling period in the summer
- Electric heating

Inflow 2014

Source: Det kongelige olje- og energidepartement Meld.St.25 (2015-2016) Melding til Stortinget Kraft til endring

OBJECTIVE

Compare results from two stochastic optimisation models with different methodological approaches for a future power system in Europe with large shares of variable wind and solar

The EMPS model

Stochastic Optimisation model With individual water values and Net restrictions

- Power market optimisation and simulation model
- Operational decision problem: linear optimization including each plant and each reservoir
- No aggregation of hydropower
- This study uses water values from the EMPS model in both operational decision problems

EMPS and SOVN analyses 2050

59 nodes:

21 nodes in Nordic countries7 nodes in Germany6 nodes UK11 offshore wind nodes in the North Sea

75 years with hourly historical wind, solar and inflow data

72 time periods per week (2 hours per weekdays 4 hours per weekends), serial simulations

Main assumptions

- From EU 7th Framework project eHighway2050: production and transmission capacities, annual demand, fuel prices,
- In addition: detailed modelling of every plant and every reservoir in the Norwegian hydropower system
- Inflow hydropower system: SINTEF Energy research data
- Historical hourly wind and solar series: Reanalysis data
- Wind and solar power production cover 61% of annual demand

Main assumptions increases Norwegian hydropower

			production				
			\frown				
		11 GW			19 GW		
	Present	New		Pump	New		Pump
Name of	capacity	capacity	Increase	capacity	capacity	Increase	capacity
EMPS region	[GW]	[GW]	[GW]	[GW]	[GW]	[GW]	[GW]
SORLAND							
79_no	4.1	7.6	3.5	1.4	8.3	4.2	1.4
VESTSYD							
7981_no	3.6	7.8	4.2	2.1	10.1	6.5	3.4
VESTMIDT							
81_no	5	7.9	2.9	0	8.5	3.5	0
TELEMARK							
8081_no	2.1	3.1	1	1	6.3	4.3	4.4
TOTAL	14.8	26.4	11.6	4.5	33.2	18.5	9.2

Source: Solvang E, Harby A, Killingtveit Å, Increased balancing power capacity in Norwegian hydroelectric power stations. SINTEF Energi TR A7195 2012

Present capacity Norwegian hydropower about 30 GW

Impacts on the power prices in the Netherlands "100% RES" scenario with extra nuclear

Prices hour-by-hour averaged for 75 years with stochastic weather data Rationing prices of 10000 Euro/MWh sets the price in periods

Paper 6: I Graabak, M Korpås, S Jaehnert, M Belsnes. "Balancing future variable wind and solar power production in Northern Europe with Norwegian hydropower". Submitted to Elsevier Energy. 1st round of comments received.

Production SORLANDET

hour-by-hour averaged for 75 years

Production VESTMIDT hour-by-hour averaged for 75 years

14

Average reservoir development SORLANDET

week-by-week for 75 simulations years

19 GW extra capacity in Norway, 4.2GW extra in SORLANDET, 1.4 GW pump capacity

0 GW extra capacity

Average reservoir development VESTMIDT week-by-week for 75 simulations years

19 GW extra capacity in Norway, 3,5

GW extra in VESTMIDT, no pumping

0 GW extra capacity

Conclusions

- SOVN to a larger degree than EMPS increase production in high price periods and pumping in low price periods
- Formal optimization (SOVN) /advanced heuristics (EMPS)
- None of the models manage to fully utilise the high price periods in the winter
- Pumping important for utilisation of increased capacity

Teknologi for et bedre samfunn