Uncertainties in techno-economic evaluation of innovative processes Effect of technology maturity and preparation effort

> Thibaut NEVEUX, Olivier AUTHIER, <u>Mohamed KANNICHE</u>, Frédéric SIROS EDF R&D, EDF Lab Chatou

Workshop on Breakthrough Post Combustion Capture Technologies Oslo, Norway - 13-14 September, 2017

Innovation and techno-economic

Uncertainties estimation

Process aspects

Equipment, installation, reactants, utilities, ... Project environment

Site adaptation, studies, licences, owner's cost, …

Financial aspects

Levelization, taxes, ...

Economic performance indicators

...

Levelized cost of production Net actual value Return on investment Internal rate

Stochastic techno-economic model $x_1 \rightarrow y = f(x)$

 \times_N –

General approach

1. Economic model creation

Requirement : y = f(x) function

for the calculation of the chosen

economic indicator

3. Uncertainties propagation

4. Indicators analysis

For CAPEX (Capital Expenditure) \rightarrow Existing methods

o Extrapolation, factorial, detailed etc.

o Internal, commercial and/or public methods

© EDF 2017 | 7

CAPEX

Process maturity

. Economic model creation

2. Uncertainties, nature and quantification

3. Uncertainties propagation

Indicators analysis

Uncertainties in economic evaluation

Scientific and technologic knowledge on the process

Process maturity: uncertainties

[1] AACE, 2003, Conducting technical and economic evaluations - As applied for the process and utility industries, AACE International Recommended Practice No. 16R-90.

Preparation effort

[2] AACE, 2011, Cost Estimate Classification System - As Applied in Engineering, Procurement, and Construction for the Process Industries, No. 18R-97.

Preparation effort: uncertainties

Recommandations of AACE International [2]

[2] AACE, 2011, Cost Estimate Classification System - As Applied in Engineering, Procurement, and Construction for the Process Industries, No. 18R-97.

Uncertainties propagations

Representation and analysis

CO2 capture systems for thermal power-plants ^[3]

[3] Carbon Capture and Storage, technical summary, IPCC 2005

Example of criteria

Pathway	Post-cor	nbustion	Oxy-cor	Pre-combustion		
Technology	Amine absorption	NH₃ absorption	Cryogenic	Chemical Looping	Chemical absorption	
Maturity (TRL)	6-7	6-7	6-7	4-5	7	
Net efficiency loss	7-8 %-pts	7-8 %-pts	7-8 %-pts	4-5 %-pts	6-7 %-pts	
Energy performance				\odot		
Economic performance	:	:	:	:	8	
Operability	:	8	:	8	8	
Flexibility	•	:	:	8	8	
Risk	<u></u>	8	$\ddot{}$	<u></u>	<u></u>	
Market	Retrofit New built	Retrofit New built	(Retrofit) New built	New built	New built	
Interest	Maturity	Stable and cheap solvent	Maturity No chemicals	Performance	Maturity Polygen. possible	
Technological gap	Pollutant emission Solvent degrad.	Seasonal variation Precipitation	Start-up duration	Complexity O2 carrier solid	Operability Flexibility	

[4] Kanniche M, Le Moullec Y, Authier O, Hagi H, Bontemps D, Neveux T, Louis-Louisy M. Up-to-date CO₂ Capture in Thermal Power Plants. Communication au GHGT-13 (nov. 2016, Lausanne), to appear in Energy Procedia

Cost comparison

edf

Evaluation of innovative processes

- o Variable maturity Concept, lab., pilot Sources of
- o Variable efforts e.g. conceptual design
 - \rightarrow early stages

Uncertainties propagation

- o Probability density function
 defined
- o Propagation easy to implement
- \rightarrow Step back on estimates

Possible extensions

- o Other sources of uncertainties
 (e.g. price of reactants)
- o Distinguished uncertainties
 (equipment, civil engineering
 etc.)

Limitations

- To be re-evaluated during technology development
- To be integrated with other indicators

Thank you

Mohamed.kanniche@edf.fr

Workshop on Breakthrough Post Combustion Capture Technologies Oslo, Norway - 13-14 September, 2017

Appendix

• Log-normal probability density function:
$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}exp\left(-\frac{(lnx-\mu)^2}{2\sigma^2}\right)$$

• Efforts

		AACE data		Param.		Percentiles calculation				
Class	Project definition	P25	P75	μ	σ	P25	P50	P66	P75	P95
4	1 à 15 %	70%	150%	0	0.5887	67%	100%	127%	149%	263%
3	10 à 40 %	80%	130%	0	0.3733	78%	100%	117%	129%	185%
2	30 à 70 %	85%	120%	0	0.2606	84%	100%	111%	119%	154%
1	70 à 100 %	90%	115%	0	0.1880	88%	100%	108%	114%	136%

• Process maturity

		AAC	AACE data Param.		Percentiles calculation				
Statut	TRL	P25	P75	μσ	P25	P50	P66	P75	P95
New concept	1 - 2	140%		0.5218 0.2748	140%	169%	189%	203%	265%
Bench scale	3 - 4	130%	170%	0.3965 0.1989	130%	149%	161%	170%	206%
Pilot unit	5 - 6	120%	135%	0.2891 0.0795	127%	134%	138%	141%	152%
First of a kind	7 - 8	105%	120%	0.1156 0.0990	105%	112%	117%	120%	132%
N th of a kind	9	100%	110%	0.0477 0.0707	105%	105%	108%	110%	118%

Knowing: the probability density functions of two processes costs (obtained by uncertainties propagation) f_C and $f_{C_{ref}}$ and associated cumulative functions F_C et $F_{C_{ref}}$

 $\mathbb{P}(C \leq C_{ref} - a)$, the probability that the process cost (C) be inferior to the cost of reference process (C_{ref}) minus a margin (a), is given by:

$$\mathbb{P}(C \leq C_{ref} - a) = \int_{-\infty}^{\infty} F_C(t) f_{C_{ref}}(t + a) dt$$