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— probibines

Permitied subjet i complance
High risk it A equisements and exdnte
cantomity ssessment

Permitied but subiest 1o
eform: e
otigatons

Al Risk Assessment Framework

[ ——

PEOPLE & | v,
PLANET | | MODEL

(oecd.ai)

Data collection
and processing

Pianning Wodel buding
anddesign N and interpretation

. Design, doto and madels

N i Verification
g and validation

Al System Lifecycle

“An Al system is a machine-based system that can, for a given set of human-defined objectives, make
A | S St e m predictions, recommendations, or decisions influencing real or virtual environments.
y It does so by utilising machine and/or human-based inputs to:
i) perceive and/or analyse real and/or virtual environments;
ii) abstract such perception. lyses into models lly or
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Definition
iii) use model interpretations to formulate options for outcomes.

Al systems are designed to operate with varying levels of autonomy.”

OECD Al Policy Observatory




OECD Al System Definition

Adopted in 2019



Name of the game:
Definition of Al



Informal definition of non-Al Q
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e Al is exactly the opposite from o B
what is happening in the video...

e ...instead of living beings
mimicking machines, Al is
intended to make machines
imitating living beings.




Al Definitions from the literature

* “The exciting new effort to make computers think...[as] machines with minds, in
the full and literal sense.” (Haugeland 1985)

» “[The automation of] activities that we associate with human thinking such as
decision-making, problem-solving, learning.” (Bellman 1978)

* “The art of creating machines that perform functions that require intelligence
when performed by people.” (Kurzweil 1990)

* “The study of how to make computers do things which, at the moment, people
are better.” (Rich and Knight 1991)

* “The study of the computations that make it possible to perceive, reason, and
act.” (Winston 1992)

 “Making machines intelligent; intelligence is that quality that enables an entity to
function appropriately and with foresight in its environment.” (Nils Nilsson)



OECD Al Definition (OECD 2019)

(adopted also by G20 and EC)

“An Al system is a machine-based system that can, for a given set of
human-defined objectives, make predictions, recommendations, or
decisions influencing real or virtual environments.

It does so by utilising machine and/or human-based inputs to:
i) perceive and/or analyse real and/or virtual environments;

ii) abstract such perceptions/analyses into models manually or
automatically; and

iii) use model interpretations to formulate options for outcomes.
Al systems are designed to operate with varying levels of autonomy.”



New OECD Al System definition (Oct 16™ 2023)
(adopted by EU Al Act, G7, US NIST, Council of Europe)

Proposed clean text:

An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendations, or decisions that [can]
influence physical or virtual environments. Different Al systems vary in their levels of autonomy and
adaptiveness after deployment.

Proposed updates in blue: OECD Al System Definition from June 2019

An Al system is a machine-based system that =, for explicit or implicit
objectives, infers, from the input it receives, how to generate outputs such as predictions, content,
recommendations, or decisions that [can] influence: ¢ physical r=2! or virtual environments. Different Al
systems vary:n4 in their levels of autonomy and adaptiveness after
deployment.
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Al System as defined by OECD
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendations, or decisions that [can]
| or virtual environments. Different Al systems vary in their levels of autonomy and

adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommgéndations, or decisions that [can]
influence physical or virtual environments. Different Al systems vary i/ their levels of autonomy and

adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendatioiis, or decisions that [can]
influence physical or virtual environments. Different Al systems vary in theit/ievels of autonomy and

adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendations, or decisieiis that [can]
influence physical or virtual environments. Different Al systems vary in their levels of

adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it

receives, how to generate outputs such as predictions, content, recommendations, or decisions that [can]

influence physical or virtual environments. Different Al systems vary in fneir levels of autonomy and
adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendations, or decisions that [can]

influence physical or virtual environments. Different Al systems vary in their levels of autonomy and
adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendations, or decisions that [can]
influence physical or virtual environments. Different Al systems vary in their levels of autonomy and

adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendations, or decisions that [can]
influence physical or virtual environments. Different Al systems vary in their levels of autonomy and

adaptiveness after deployment.
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An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the input it
receives, how to generate outputs such as predictions, content, recommendations, or decisions that [can]
influence physical or virtual environments. Different Al systems vary in their levels of autonomy and

adaptiveness after deployment.
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Al System and relation to higher level principles

Human- Accountability and Building human capacity and

centred values responsibility preparing for job transition
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Al System and sources of various types of biases

Perception Bias
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Three Levels
of Al Scaling

* Pre-Training, Post-
Trainig, and Test-
Time Scaling
“Reasoning”

“Reasoning”
becoming in 2025
as likely the main
topic

SCALING LAWS

COMPUTE
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Al Risk Assessment Framework

Al System Lifecycle
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Source: Al in Society.

OECD Al System Lifecycle

Adopted in 2019




OECD Al System Lifecycle
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Al Risk Assessment Framework

Al System
Definition

OECD Al Principles

Adopted in 2019
https://oecd.ai/en/ai-principles

Values-based principles

Inclusive growth, sustainable
development and well-being

Human-centred values and
faimess

Transparency and explainability

Robustness, security and safety

Accountability

Recommendations for policy makers

Investing in Al research and N
development

Fostering a digital ecosystem for AI >
Shaping an enabling policy N
environment for Al

Building human capacity and

preparing for labour market >
transformation
International co-operation for 5
trustworthy Al


https://oecd.ai/en/ai-principles

OECD Al Principles

(the only politically agreed Al document so far — 44 countries)
https://oecd.ai/ai-principles

Values-based principles Recommendations for policy makers

Inclusive growth, sustainable 5 /‘7‘ Investing in Al research and S
development and well-being uﬂﬂ% development

Human-centred values and R . . .

faimess > g@ Fostering a digital ecosystem for Al

Shaping an enabling policy S

Transparency and explainability > environment for Al

Building human capacity and

Robustness, security and safety > preparing for labour market >
transformation
- International co-operation for
@ Accountability > trustworthy Al >

Legal document: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449



https://oecd.ai/ai-principles
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449

1.1.Inclusive growth, sustainable development and well-being

Stakeholders should proactively engage in responsible stewardship of trustworthy Al in pursuit of beneficial outcomes for people and the planet, such as
augmenting human capabilities and enhancing creativity, advancing inclusion of underrepresented populations, reducing economic, social, gender and
other inequalities, and protecting natural environments, thus invigorating inclusive growth, sustainable development and well-being.

1.2.Human-centred values and fairness

a) Al actors should respect the rule of law, human rights and democratic values, throughout the Al system lifecycle. These include freedom, dignity and
autonomy, privacy and data protection, non-discrimination and equality, diversity, fairness, social justice, and internationally recognised labour rights.

b) To this end, Al actors should implement mechanisms and safeguards, such as capacity for human determination, that are appropriate to the context
and consistent with the state of art.

1.3.Transparency and explainability

Al Actors should commit to transparency and responsible disclosure regarding Al systems. To this end, they should provide meaningful information,
appropriate to the context, and consistent with the state of art:

i. to foster a general understanding of Al systems,
ii. to make stakeholders aware of their interactions with Al systems, including in the workplace,
iii. to enable those affected by an Al system to understand the outcome, and,

iv. to enable those adversely affected by an Al system to challenge its outcome based on plain and easy-to-understand information on the factors, and
the logic that served as the basis for the prediction, recommendation or decision.

1.4.Robustness, security and safety

a) Al systems should be robust, secure and safe throughout their entire lifecycle so that, in conditions of normal use, foreseeable use or misuse, or other
adverse conditions, they function appropriately and do not pose unreasonable safety risk.

b) To this end, Al actors should ensure traceability, including in relation to datasets, processes and decisions made during the Al system lifecycle, to
enable analysis of the Al system’s outcomes and responses to inquiry, appropriate to the context and consistent with the state of art.

c) Al actors should, based on their roles, the context, and their ability to act, apply a systematic risk management approach to each phase of the Al
system lifecycle on a continuous basis to address risks related to Al systems, including privacy, digital security, safety and bias.

1.5.Accountability

Al actors should be accountable for the proper functioning of Al systems and for the respect of the above principles, based on their roles, the context,
and consistent with the state of art.
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OECD Al System Classification

Adopted in 2022

https://oecd.ai/en/classification



https://oecd.ai/en/classification

OECD framework for the
CIﬂSSlflcatlon Of AI on, proprietary etc.)

- Appropriateness and quality
systems

- Provenance, collection, dynamic nature
- Rights and ‘identifiability’ (personal data

Al actors include data collectors & processors

____________________________________________________________

Top Ievel P CONTEXT " I

] . PEOPLE & PLANET
dlmenS|OnS - Users of the system
include a numbe

- Industrial sector - Impacted stakeholders
of sub-

- Business function & model JEWE - Optionality & redress
- Critical function - Human rights, incl. privacy
- Scale & maturity - Well-being & environment
dimensions
equipped with
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- Model characteristics
- Model building
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- System task (recognise; personalise etc)

i N d |Cat0 I'S - System action (autonomy level)

- Combining tasks and action
- Core application areas (computer vision etc)

Al actors include system integrators
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Policy Observatory

Linking the classification & Al system lifecycle actors
=
dimensions 4 Planet & Input & Output
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OECD framework for the classification of Al systems
Al System Lifecycle

Actors include data collectors
& processors

Collect & process
data

PEOPLE & \]
_ . PLANET Build & use
l Plan & design ‘ model
it Use or Lot
r =N ;

Operate & ‘ Actors include end-users Verify & validate
& stakeholders

)
T

galelylide]y

Actors include system | Actors include
operators : p*m.fnpers & madeffers_

Deploy

Actors include system
integrators




Using the framework for health technology assessment

Clinical liability
Current use
Changes to data flows
Local deployment factors

Local performance

End-user training
End-user well being
End-user/patient autonomy
Consent
Communication strategies

The
Alan Turing
Institute

Input description

PATIENTS, |
STAKEHOLDERS !
& PLANET

UNIVERSITYOF
BIRMINGHAM

Model reporting
Training data reporting
Performance in different

groups
Handling outlier data
Harm
Autonomy

Output description

Post deployment change
management plan

Benchmarking
Oversight committees




OECD. Al

Policy Observatory

Example 1: Credit-scoring Al systems

Selected criteria:

e System users — Amateur (bank employee)
e Optionality — Cannot opt out

 Human rights impact - Yes f;
e Sector of deployment - Financial system (e.g., banking, insurance) -

e Critical function - Critical function/activity (availability of financial services, inclusion)

* Data collection — Human (set of rules) and automated sources (e.g. profiles, loan payments)
* Rights - Mix of proprietary and public data
* “Identifiability” - often personally identifiable data

* Model building - e.g., statistical/hybrid model; learns from provided data, augmented by
human knowledge

* Model evolution - Can evolve during operation
» System task - Forecasting: uses past & existing behavior to predict future outcomes
 Level of action autonomy - Medium (human on-the-loop)



OECD. Al

Policy Observatory

Example 2: GPT-3, text generation

Selected criteria:

Caveat: general purpose Al system, so nearly all responses depend on the
specific application context! Medical advice, content filter, creative writing...

e System users — Primary users are amateur

* Impacted stakeholders — workers, consumers

» Sector of deployment - Information & communication
* Critical function - None

e Data collection — Human sources (text strings)

* Rights - Largely public data sources (some proprietary)
* Model building — Learn from provided data

* Model evolution - Evolution during operation

e System task — Goal-driven optimization, Reasoning with knowledge structures, interaction
support, recognition, personalisation

* Level of action autonomy - Low autonomy [human action required e.g., to use
generated text]

CONTEXT

. PEOPLE&
PLANET =

Al MODEL




Al Risk Assessment Framework
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OECD Al Risk Assessment

..work in progress



OECD Risk assessment framework:
categorization of uses of Al in the draft EU Al Act

Unacceptable risk

. i Prohibited
e.g. social scoring

Permitted subject to compliance
High risk with Al requirements and ex-ante
e.g. recruitment, medical conformity assessment
*Not mutually devices
exclusive

‘Transparency’ risk Permitted but subject to
‘Impersonation’ (bots) information/transparency
obligations

Minimal or no risk Permitted with no restrictions
' n European |
' Commission
@)y
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Near real-time observation of the evolution of Al across 12 dimensions

https://oecd.ai/



Real-Time Technology Watch

“a journey of an innovation”
* “OECD Al Policy Observatory” (https://oecd.ai/)

| | I
] s o e e e s e

* Main objectives of the use case are to build a platform to respond on
guestions related to the global innovation ecosystem in the area of Al
* To understand the evolution of Al?
* To detect impactful innovations early in the process?
* To predict what will be ‘the next big thing’ in Al?
* Building aka ‘the digital twin of Al ecosystem’

* The basic premise is that ideas and innovations which will impact our
lives in the next 5-10 years are already invented and published...


https://oecd.ai/

OECD Al Policy Observatory narrative:

Tracking an innovation across many stages of the ecosystem

* An innovation spotted in the academic world...

...projects are started around the innovation (publicly funded, open source)
...researchers & developers informally discuss the innovation

...the innovation gets patented

...companies are established around the innovation

...companies get investments, possibly in several rounds
...investments have influence on job market (supply and demand side)
...market reacts on the quality of innovation

...education introduces new courses

...perception & interest from expert and broad audiences

...media starts publishing about the innovation and companies
...incidents happen to show weaknesses to be treated

...policies are formulated on international and national level



OECD Al Policy Observatory (oecd.ai) data sources

* Academic world — Microsoft Academic Graph/OpenAlex, SCOPUS (~200M, ~1M per month)
* Projects — CORDIS/NSF/... (>100k), GitHub (~30M repositories)

* Informally discussions — StackOverflow.com forums

* Patents — Microsoft Academic Graph

 Companies — Orbis, Dun & Bradstreet

* Investments — Preqin.com (>20k investments)

e Job market — LinkedIn.com (supply side) and Adzuna.com (demand side)

* Market —Yahoo Finance, Bloomberg, ...

e Education — StudyPortals.com (~3000 universities, English courses only)

* Perception — Google Trends & Twitter

* Media — EventRegistry.org (1M news per day)

* Incidents — database in construction (>1000) based on IncidentDatabase.ai
 Policies — OECD global policies database (oecd.ai) (~1000 docs on Al)



Cascading influence ot an innovation
(“tensorflow” example)
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https://aibench.ijs.si/

Cascading influence ot an innovation
(“tensorflow” example)
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Cascading influence of an innovation
(“knowledge graph” example)
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Cascading influence of an innovation
(“LSTM algorithm” example)
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Production of Al research over years
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Al Research collaboration between institutions
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Trends in Al subtopics over time
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Between-country
Al skills migration
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Top Al skills
worldwide

@ Machine Learning
© Artificial Intelligence (Al)

o Data Structures

o Deep Learning

© \LP

© TensorFlow

© Pandas

@ Scikit-Learn

@ Neural Networks

@ Keras

@ OpenCV

@ Artificial Neural Networks

@ PyTorch

@ Reinforcement Learning

@ Algorithm Development



VC Investments in Al worldwide
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VC Investments per country
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VC Investments per Al sector
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X . Mobility & autonomous vehicles

X . Medias, social platforms and marketing
X . Healthcare, drugs and biotechnology

X . IT infrastructure 8 hosting

X . Business processes and support services
X . Financial and insurance services

X . Hardware (robots, IT, sensors, etc.)

X . Digital security

X . Logisitics, wholesale and retail



Some of the lessons learned from
OECD Al Policy making

...semantic gap between legal & technical fields

..technology evolves faster as policy makers manage to regulate it



Normative vs technical indicators

International & . EU, OECD, CoE, UN, ...
Human Rights ' i

National Law recommendations

* ngh level view to Normative Al framework:

the mEtl;’OdOloglcal Constraints, recommendations, guidelines
approacn on on how an Al system should behave
bridging the gap

Philosophical,

between hormative E.g.: accountability, human centricity, fairness, transparency,

systems (o_n the tOp) Mg;ﬁtel-etial explainability, robustness, security, safety, criticality, ...

and technical Al :

systems (on the

bottom).

) Measgablel E.g.: accuracy, precision/recall, ROC/AUC, stat. significance,

 The gap appears qular;f. tqua ‘ anonymization, speed, storage, application, industry sector, ...

between the tlellelseles

abstract concepts

Methodological Offline Testing Online Monitoring
Review Review Review

used in normative
documents and
technical indicators
measurable from a
technical system. Al System
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Al Systems vs. Human Capabilities Where we are

(Evolution of Al systems related to human skills) (basic human skills)
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https://www.gov.uk/government/publications/international-scientific-report-on-the-safety-of-advanced-ai



https://www.gov.uk/government/publications/international-scientific-report-on-the-safety-of-advanced-ai

(Some of) the basic properties of Al systems
which could endanger human rights

* Managing large scale of complexity (recursive Al agents)
 ...using the scale of data in the size of all human digital content
* Humans cannot manage complexity beyond certain scale

 Black-box models / lack of transparency
e ..suitable for machine, but not for human
 Humans don’t have feedback into machine (by explanation)

* Speed of inferencing
e Surpassing humans in reaction time
* The Speed of computers increases ~4 times per year

* Autonomous Decision-Making (Human ‘Out of Loop’)
e ...due to misalignment of human vs. machine value systems

* Unclear accountability
e ...the chain of stakeholders in the process is long

* Robustness
 ...Al systems are not perfect and is hard to guarantee stable results




Model Representation

(Un)Known-(Un)Knowns —
Model Representation vs. Phenomena Discovery

Phenomena Discovery
—

Human Interpretable
(provided by a human to a
machine)

Human Uninterpretable

(created by a machine to
optimize the solution)

Phenomena
Known to Humans

(what people already
know, but want to model
and understand)

Traditional Statistics,
Traditional Al, Logic
Reasoning

Modern Al (after 2010),
Deep Neural Networks,
Transformers,

Reinforcement Learning

Phenomena
Unknown to Humans
(what people typically
don’t know yet)

Advanced Statistical
Methods, Unsupervised Al
(e.g. anomaly detection)

Al to come, e.g., Al with
“multihop” reasoning,
Online Reinforcement

Learning \

...this would allow to reach yet undiscovered concepts and
relations and reach insights far from what humanity knows today
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Speed of computers:
computers are ~4 times
faster every year

* If computers will be expectedly
much faster in the near future, what
can we do with such capacity?

e ...what fundamental Al problems
could be addressed and what
consequences this could have?

Jensen Huang, NVIDIA CEO, March 19, 2024

"Moore's Law, in its best days, would have
delivered 100x in a decade," Huang explained.
"By coming up with new processors, new
systems, new interconnects, new frameworks
and algorithms and working with data
scientists, Al researchers on new models,
across that entire span, we've made large
language model processing a million times
faster."

https://siepr.stanford.edu/news/nvidias-jensen-huang-incredible-future-ai

https://www.youtube.com/watch?v=cEg8cOx7UZk



https://siepr.stanford.edu/news/nvidias-jensen-huang-incredible-future-ai
https://www.youtube.com/watch?v=cEg8cOx7UZk

(Near- to Mid-)future Al challenges

1.

Advanced reasoning capabilities to reach
(un)known (un)known knowledge

Why GenAl/LLMs works at all?

Introducing “World Models“ to relate
with human understandable world

Large (recursive) Al agent infrastructures
with autonomous emergent behaviors

Integrating new data modalities (types of
data) beyond the usual ones

Muldi-hop
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How LLM models see the world?

* There is no explicit “world model”

w5

e ...i.e., machine does not understand the L AEX3:
world B
* For humans it looks like a “big black-box” | uicis

e ..Ssince it is expressed in a language not ==

understandable by humans

* Internally the black box is a huge
network of interleaved probabilistic
concepts

e ...could be visualized as a network of

interconnected clouds representing
concepts
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LLMs & World Models

LLM as a
big black-box

Fragments of
explainable

knowledge
(via local “world models”)



Example: The map of the
concept (Claude3 LLM)

Conflicting
Allegiances/Identities
nces

® Conflicting allegiances
OO ' P
» ‘ Caught in middle

o . Remaining neutral
o

o
Mediating neutrality

Finding balance.
® Difficulty struggles

o
Finding balance

o ‘..
o®

Po

Balancing
Tradeoffs

https://transformer-circuits.pub/2024/scaling-monosemanticity/umap.html?targetld=1m 284095

“Inner Conflict” :

Reluctance/

Guilt Providing reasons @
Losing religious faithe®
Guilt representations @
Text structure ®
Considering choices eg
°
Overcoming temptation °
°
L °
Inner Conflict/
Emotion vs ° P
Reason @) e
‘© ~
Inner conflicts @ —
Romantic struggles ® o °
Hesitation dete.ction ° °
i °
Inner conflicts . .
[}
° o ° ) o
°
e’ ©
O . p

Uncertainty confusione® e

Torn loyalties ® °
2

°
Mixed emotions @)
°

Mixed emotions ® °
Mixed feelings ®

Ambivalence detection .

Relationship complexities’ ° o @)
e
LIPS » @ =0
°
Paradoxical concepts o e 0.
°
) S
o
°
) ™®
radoxes
Ethical debates..
. Conflicting
Paradoxes/Academic Interests

. °
...‘O.‘

] . ’Opposingfriends

o Friend conflicts

° .Difficult choices
o ® Binary choice
o ©
o . ’ o |DRifficult choices
° . Forced actions
° °
°
" . o
Moral gompromises,o

Difficult tradeoffs @

°
° ° . @ O . :
, e Inner conflict™y
° -
° o .‘ Glnner Conflict'Feature
° °
° O oo ° ® ° ©
® .
e >~ ..0 Character tensions
) (]
©) .
°

P . . 8
Jratnstxj_l
Ethical controversies arty(C15agia

°
Political debates .’
e

% ) Unable desires

. Uncgrtainty hedging

Debates

® End of sentence

% Universal experiencds

Nearest neighbors to the
Inner Conflict feature

@ 34Mrun @ 4Mrun 1M run

.Impussible choices
° ]
o® Precarious situations

©® "Between a rock..."

9. ’Catch-zz phrase

' Dilemma puBlications

° [5°)

° 4
Difficult Situations/
Catch-22

areness
S

Conflicting
Allegiances/Identities

o Ponflicting allegiances
qo 1 P
‘ Caught in middle

° .Remaining neutral

.# ° ® e

Mediating neutrality

°
°
Finding balance .
@ Difficulty struggles
°
° )

Finding balance
e
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Questions?
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