Abstract
The opening of the Barents Sea for oil and gas exploration and development has been a controversial topic of social debate in Norway, particularly due to environmental and fisheries interests. A zero tolerance regime for oil spills has been introduced in this Northern Region, which means that every effort should be made to avoid oil spills. Eni Norge is presently developing the Goliat oil field in the Barents Sea and production is planned to start in 2013. The Goliat field is the very first production oil field in the Barents Sea.
SINTEF has developed a method for establishing proactive safety indicators for monitoring of risk of oil spills at the Goliat field. As all possible accident scenarios cannot be foreseen in advance, particularly with new challenges such as oil production in Arctic areas, Eni Norge needs to prepare for the unexpected. This is why a resilience perspective (i.e. capability of recognizing, adapting to, and coping with the unexpected) has been pursued in developing the safety indicators. The potential benefit of the proposed method has been demonstrated using the Deepwater Horizon accident as an evaluation case. The main difference from other similar work is the focus on coping with the unexpected – building on the research on resilience.
The information provided in this paper is applicable to any development and use of proactive safety indicators in the oil and gas industry. The first application – also used during the development of the method – is the Goliat oil field in the Barents Sea. The paper presents the conclusions from the evaluation of the safety indicator method using the Deepwater Horizon (DWH) accident as case. The evaluation shows the relevance of this resilience based method, in particular the general resilience issues being a central part of the method. It shows that indicators for the proposed general issues could have provided early warnings for the Deepwater Horizon accident. The significance of the work is the provision of (resilience based) proactive safety indicators to prevent accidents in the future.
SINTEF has developed a method for establishing proactive safety indicators for monitoring of risk of oil spills at the Goliat field. As all possible accident scenarios cannot be foreseen in advance, particularly with new challenges such as oil production in Arctic areas, Eni Norge needs to prepare for the unexpected. This is why a resilience perspective (i.e. capability of recognizing, adapting to, and coping with the unexpected) has been pursued in developing the safety indicators. The potential benefit of the proposed method has been demonstrated using the Deepwater Horizon accident as an evaluation case. The main difference from other similar work is the focus on coping with the unexpected – building on the research on resilience.
The information provided in this paper is applicable to any development and use of proactive safety indicators in the oil and gas industry. The first application – also used during the development of the method – is the Goliat oil field in the Barents Sea. The paper presents the conclusions from the evaluation of the safety indicator method using the Deepwater Horizon (DWH) accident as case. The evaluation shows the relevance of this resilience based method, in particular the general resilience issues being a central part of the method. It shows that indicators for the proposed general issues could have provided early warnings for the Deepwater Horizon accident. The significance of the work is the provision of (resilience based) proactive safety indicators to prevent accidents in the future.