To main content

Wet chemically prepared silicon nanowire arrays on low-cost substrates for photovoltaic applications

Abstract

Silicon nanowire (SiNW) based solar cells are a promising candidate for third generation solar cells with high efficiency, which will further reduce the cost of the PV modules, making it competitive with conventional energy sources. In this paper the wet chemical etching process for generating silicon nanowires is investigated on different low-cost substrate materials. These nanowires are useful for a radial pn-junction solar cell with core–shell configuration, which allows for using absorber materials with low-carrier lifetime. In this work, wet chemical nanowire etching is applied to edge-defined film-fed growth (EFG) mc-Si wafers, mc-Si wafers made from metallurgical grade Si, multicrystalline (mc-Si) thin films deposited on glass, and thin crystallized films deposited on mc-Si wafers produced from metallurgical grade Si. A proof of concept for using low-cost materials in PV is demonstrated for SiNWs prepared on mc-Si wafer produced from highly doped MG-Si.

Category

Academic article

Language

English

Author(s)

Affiliation

  • Germany
  • United Kingdom
  • SINTEF Industry / Metal Production and Processing

Year

2013

Published in

Physica status solidi. A, Applied research

ISSN

0031-8965

Volume

210

Issue

4

Page(s)

728 - 731

View this publication at Cristin