Abstract
In the quest for improved bone growth and attachment around dental implants, chemical surface modifications are one possibility for future developments. The biological properties of titanium based materials can be further enhanced with methods like anodic polarization to produce an active rather than a passive titanium oxide surface. Here we investigate the formation of hydroxide groups on sand blasted and acid etched titanium and titanium–zirconium alloy surfaces after anodic polarization in an alkaline solution. X-ray photoelectron spectroscopy shows that the activated surfaces had increased reactivity. Furthermore the activated surfaces show up to threefold increase in OH− concentration in comparison to the original surface. The surface parameters Sa, Sku, Sdr and Ssk were more closely correlated to time and current density for titanium than for titanium–zirconium. Studies with MC3T3-E1 osteoblastic cells showed that OH− activated surfaces increased mRNA levels of osteocalcin and collagen-I.