Abstract
We report on the stability of the La0.7Sr0.3MnO3 thin film surface when deposited on (111)-oriented SrTiO3. For ultrathin La0.7Sr0.3MnO3 films, an initial 3-dimensional morphology is observed, which becomes 2-dimensional with increasing film thickness. For even thicker samples, we show that the surface morphology evolves from 2-dimensional to 3-dimensional and that this observation is consistent with an Asaro-Tiller-Grinfeld instability, which can be controlled by the deposition temperature. This allows for synthesis of films with step-and-terrace surfaces over a wide range of thicknesses. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the films are strained to the SrTiO3 substrate and reveals the presence of an elongated out-of-plane lattice parameter at the interface with SrTiO3.