To main content

Validation of a hybrid code combining potential and viscous flow with application to 3D moonpool

Abstract

When operating with a moonpool, a main concern is the large-amplitude piston-mode motion at resonance. This limits the time-window for operations inside the moonpool. Longer time-windows are desired. Further, the moonpool size is expected to increase for dedicated vessels. There has therefore recently been an increased attention to moonpool design. Potential theory highly over-predicts the water motion at moonpool resonance, and may not be used for analyzing moonpool. Viscous damping has been shown to be important, and hence vital for the moonpool functionality. We present new numerical results with a hybrid method that combines potential and viscous flow. The simulations are done with a newly implemented code called PVC3D (Potential Viscous Code). The free-surface motion is governed by potential theory, while a Navier-Stokes solver provides the solution in the main bulk of the water. With the presently considered set-up with simple geometries, the computational time remains similar to that of pure potential flow time-domain solvers, while the important flow separation that provides viscous damping is captured. The application is to a 3D moonpool set-up. The inlet of the moonpool has sharp corners, and viscous damping is significant. Good agreement with experiments is demonstrated.

Category

Academic chapter/article/Conference paper

Language

English

Author(s)

Affiliation

  • Norwegian University of Science and Technology
  • SINTEF Ocean / Skip og havkonstruksjoner

Year

2013

Publisher

The American Society of Mechanical Engineers (ASME)

Book

32nd International Conference on Ocean, Offshore and Arctic Engineering Odd M. Faltinsen Honoring Symposium on Marine Hydrodynamics

Issue

9

ISBN

978-0-7918-5543-0

View this publication at Cristin