Abstract
A growth of one-dimensional noble metal nanostructure with controlled structural characteristic has been under intense investigation as the physical properties, for example, mechanical and electrical properties highly depend on the crystallinity of the nanostructure. Herein, we report a seed-mediated growth of gold nanowires with controlled structural and morphological characteristics, which can easily be varied by selecting appropriate seed nanoparticles, either spherical or rod type in aqueous solution at room temperature. The growth of nanowires was monitored by characterizing the samples at different time period during the reaction, and our observations suggest that growth occurs from seeds rapidly growing along one-dimension followed by surfactant induced fusion or welding and surface diffusion. The aspect ratio and morphology of these NWs can be tuned by CTAB concentration, pH and temperature of the growth solution. We show that the aspect ratio and morphology of these NWs can be tuned by the surfactant concentration, pH and temperature of the growth solution. Electron microscopy and X-ray Photoelectron spectroscopic techniques were employed for investigating structural and surface characteristics of nanowires. This approach can possibly help to synthesize nanowires of other metals with controlled crystalline behaviour which is highly essential for understanding their properties and practical applications in nanoelectronics, optical devices, catalysis, and sensors.