To main content

Non-destructive wafer-level bond defect identification by scanning acoustic microscopy

Abstract

Metal-based thermocompression bonding enables the creation of hermetic seals formed at relatively low processing temperatures and occupying a small portion of the device area. In the current study we have investigated the application of scanning acoustic microscopy (SAM) for assessing the quality of metal thermocompression bonds, both by evaluating its capabilities of localizing areas of poor bonding, and by finding defects in the integrity of the bond seal. Wafer laminates containing a test vehicle of sealing frames with pre-defined defects in the bond metal layer were sealed by Au–Au and Al–Al thermocompression bonding. Employing SAM, an area of five chips of poor bonding was identified non-destructively on the Al–Al laminate. Line defects of width 3.6 µm and point defects of diameter 22.4 µm have also been identified by SAM. The dicing yield for sealing frames was above 96 % for all frames of widths 100–400 µm and for both bond metal systems. The average bond strength was 31.5 ± 11.9 MPa for Al–Al thermocompression bonds and 37.3 ± 9.7 MPa for Au–Au thermocompression bonds. Scanning acoustic microscopy operates non-destructively and proved to be an extremely useful tool complementing current state-of-the-art methods for bond quality assessment.
Read publication

Category

Academic article

Client

  • Other / E-SIP PROJECT ENIAC JU
  • Research Council of Norway (RCN) / 210601
  • Other / E-SIP project ENIAC JU

Language

English

Author(s)

  • Sebastian Brand
  • Sebastian Tismer
  • Sigurd Moe
  • Kari Schjølberg-Henriksen

Affiliation

  • Fraunhofer Institute for Mechanics of Materials IWM
  • SINTEF Digital / Smart Sensors and Microsystems

Year

2015

Published in

Microsystem Technologies : Micro- and Nanosystems Information Storage and Processing Systems

ISSN

0946-7076

Publisher

Springer

Volume

21

Issue

7

Page(s)

1385 - 1394

View this publication at Cristin