Abstract
Automated sewing is a complicated task in manufacturing. Due to the non-rigid work pieces and variations in the material characteristics, sensor-based control has to be used to accomplish the sewing operation. This paper presents a strategy for velocity synchronization and corner matching in an automated sewing cell based on two industrial manipulators and a sewing machine. A hybrid force/motion control scheme is adopted using feedback from force/torque sensors for tension control and optical sensors to control the seam position. The strategy is based on switching between force control and displacement control using a leader/follower coordination scheme. This addresses the problem of corner mismatch occurring when two independent force controllers are used for controlling the two robots. Experiments verify that the proposed method gives a satisfactory corner matching, which is crucial for the presented sewing case.