To main content

On Joint Source-Channel Coding for a Multivariate Gaussian on a Gaussian MAC

Abstract

In this paper, nonlinear distributed joint source-channel coding (JSCC) schemes for transmission of multivariate Gaussian sources over a Gaussian multiple access channel are proposed and analyzed. The main contribution is a zero-delay JSCC named Distributed Quantizer Linear Coder (DQLC), which performs relatively close the information theoretical bounds, improves when the correlation among the sources increases, and does not level off as the signal-to-noise ratio (SNR) becomes large. Therefore it outperforms any linear solution for sufficiently large SNR. Further an extension of DQLC to an arbitrary code length named Vector Quantizer Linear Coder (VQLC) is analyzed. The VQLC closes in on the performance upper bound as the code length increases and can potentially achieve the bound for any number of independent sources. The VQLC leaves a gap to the bound whenever the sources are correlated, however. JSCC achieving the bound for arbitrary correlation has been found for the bivariate case, but that solution is significantly outperformed by the DQLC/VQLC when there is a low delay constraint. This indicates that different approaches are needed to perform close to the bounds when the code length is high and low. The VQLC/DQLC also apply for bandwidth compression of a multivariate Gaussian transmitted on point-to-point links.

Category

Academic article

Client

  • Research Council of Norway (RCN) / 225885
  • Research Council of Norway (RCN) / 213131

Language

English

Author(s)

  • Pål Anders Floor
  • Anna N. Kim
  • Tor Audun Ramstad
  • Ilangko Balasingham
  • Niklas Wernersson
  • Mikael Skoglund

Affiliation

  • Norwegian University of Science and Technology
  • Oslo University Hospital
  • SINTEF Digital / Smart Sensors and Microsystems
  • Sweden
  • Royal Institute of Technology
  • University of Oslo

Year

2015

Published in

IEEE Transactions on Communications

ISSN

0090-6778

Publisher

IEEE Sarnoff Symposium

Volume

63

Issue

5

Page(s)

1824 - 1836

View this publication at Cristin