Abstract
Goal, Scope and Background The objective of this study was to assess environmental impacts of Norwegian cod fishing and salmon farming and compare these with chicken farming in order to find reference levels for environmental performance and identify problem areas and potentials for improvements. Methods A Life Cycle Screening following the production of 0.2 kg fillets as a functional unit through the respective food chains is performed for all 3 products. The analysis is partly quantitative and qualitative focusing on energy use, antifouling and land use impacts. Case studies are performed to investigate potentials for improvements within the fisheries and aquaculture industry. Results and Conclusions It can be concluded that the fishing phase for the cod and the feeding phase for both salmon and chicken dominate for all environmental impacts considered. Chicken is most energy effective followed by salmon and cod, which are almost on the same level. The area of sea floor affected by bottom trawling is around 100 times larger than the land area needed to produce the chicken feed for production of the 0.2 kg fillet. - The case studies show potentials for improvement of environmental performance, both for salmon farming and cod fishing, especially when it comes to energy use. The environmental impacts on the sea floor imposed by bottom trawling are not fully explored, but based on the precautionary principle a reasonable conclusion is that bottom trawls with less impact on the sea floor should be developed. Recommendation and Perspective LCA methods have initially been developed for land based industrial applications. More effort should be given to adapt these to fishing applications in order to obtain more accurate assessment of environmental impacts from seafood products. It is recommended to put more emphasis in finding improved indicators for impacts imposed by over-fishing, fuel emission from combustion at sea, use of antifouling and seafloor ecosystem di