Abstract
Over the last decade, several studies have reported a significant increase in marine primary production of the Arctic Ocean due mainly to a decrease in the extent of the icepack. Given the lack of in situ measurements, these studies were either based on prognostic models that use time series of remote sensing measurements of clouds, ice concentration and, most importantly, phytoplankton biomass at ocean surface (ocean colour remote sensing, OCRS), and coupled physical–biological ice–ocean (CPBO) dynamic models. In this paper, we review the strengths and limitations of these two approaches when applied in the Arctic Ocean. More specifically, we examine how they compare in terms of phytoplankton growth modelling and parameterisation, including relative to the current literature on measured Arctic phytoplankton growth parameters.