Abstract
Produced water (PW) discharged to the marine environment may contain both natural substances and industrial chemicals that are potentially persistent, bioaccumulating and toxic (PBT). Identification of substances as PBT is dependent upon accurate assessment of biodegradation rates, but these measurements can be impeded where substances exhibit inherently low solubility in water. Examples of substances of this kind include some alkylated phenols (APs). Biotransformation of three APs, suspected to be PBT compounds in PW, was investigated by adopting a new methodology in which they were immobilized to hydrophobic adsorbents submerged in natural seawater. These compounds were not ready biodegradable by conventional screening biochemical oxygen demand (BOD) methods at high concentrations (2 mg/L). However, potential biodegradability for two of the three APs were demonstrated by the immobilization method at low concentrations (appr. 100 μg/L), with biotransformation half-lives <50 days. Thus, standard screening tests should be supplemented by biodegradation methods suited for testing of poorly soluble substances before the persistence of potential PBT substances are defined.