Abstract
This study reports on the preparation of cobalt doped zinc oxide (Co:ZnO) films via pulsed electron beam ablation (PEBA) from a single target containing 20 w% Co on sapphire (0001) and silicon (100) substrates. The films have been deposited at various temperatures (350оC, 400оC, 450оC) and pulse frequencies (2 Hz, 4 Hz), under a background argon (Ar) pressure of about 3 mtorr, and an accelerating voltage of 14 kV. The surface morphology has been examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). According to SEM analysis, the films consist of nano-globules whose size is in the range of 80-178 nm. Energy dispersive x-ray spectroscopy (EDX) reveals that deposition is congruent and the prepared films contain ∼20±5 w% cobalt. It has been found that the nano-globules in the deposited films are cobalt-rich zones containing ∼70 w% Co. From x-ray photoelectron spectroscopy (XPS) analysis, Co 2p3/2 peaks indicate that the deposited films contain CoO (binding energy = 780.5 eV) as well as metallic Co (binding energy = 778.1-778.5 eV). X-ray diffraction (XRD) analysis supports the presence of metallic Co hcp phase (2ϴ = 44.47° and 47.43°) in the films.