Abstract
Our research concerns the coordination and control of robotic vehicles for upper water-column oceanographic observations. In such an environment, operating multiple vehicles to observe dynamic oceanographic phenomena, such as ocean processes and marine life, from fronts to cetaceans, has required that we design, implement and operate software, methods and processes which can support opportunistic needs in real-world settings with substantial constraints. In this work, an approach for coordinated measurements using such platforms, which relate directly to task outcomes, is presented. We show the use and operational value of a new Artificial Intelligence based mixed-initiative system for handling multiple platforms along with the networked infrastructure support needed to conduct such operations in the open sea. We articulate the need and use of a range of middleware architectures, critical for such deployments and ground this in the context of a field experiment in open waters of the mid-Atlantic in the summer of 2015.