Abstract
Synthetic microplastic fibres (MPFs) are increasingly being reported as one of the dominant forms of microplastic pollution in aquatic environments. Clothing and textiles produced from synthetic fibres such as polyester (PES), polyacrylic (PAC) and nylon (PA) are considered some of the main sources of MPFs. However, there has been little focus on the environmental fate of MPFs, especially in polar regions where there is often no wastewater treatment. The MICROFIBRE project is investigating the environmental fate and effects of the most commonly used synthetic fibres; polyacrylic (PAN), polyamides (nylon) and polyester (PES), together with a natural fibre (wool) as a control, in polar and temperate aquatic environments. MPFs have be generated from pristine yarns in lengths matching those observed for MPFs released from domestic washing machines during washing of synthetic textiles (ca. 1-3 mm x 10-20 µm). Comprehensive physicochemical characterization of the fibres has been conducted, including investigation of organic and metal additive contents. Long-term degradation studies, investigating the effect of UV radiation and mechanical abrasion on the physical and chemical stability of fibres are being conducted under a range of temperatures, including under Arctic marine conditions (5°C). Furthermore, the possibility of MPFs acting as vectors for toxic chemicals is being studied. This is approach includes both the release of intrinsic MPF additive chemicals leaching into seawater and freshwater and also the interaction of different MPFs with persistent organic pollutants (POPs) already ubiquitously present in the environment. We will present results that show how temperature, salinity and polymer type all have significant impacts on the extent of both processes.