Abstract
A novel fracture calibration method is presented for material models applied in finite element analysis of pipeline steels exposed to running ductile fracture. The calibration is based on the drop-weight tear test which is commonly applied for qualification of pipeline steels. The method is applied on three L450 steels with low, medium and high impact toughness. The calibrated fracture models are used in a numerical analysis of a full-scale fracture propagation test where the crack-driving force stems from a CO2-rich mixture that initially is in a dense phase. The results from the simulations are compared with experimental results.