Abstract
Leakages of greenhouse gases, such as methane and carbon dioxide from wells, may have considerable environmental consequences. Although much emphasis is currently put on understanding well barrier failures, and thus, preventing well leakages, especially for an important barrier material as cement, there are still several knowledge gaps and unknowns. However, a step-change in well integrity understanding may be obtained by applying advanced characterization techniques and scientific approaches to studying well barrier materials and their failure mechanisms. This paper describes the development of an experimental methodology that uses X-ray computed tomography to obtain 3D visualizations of cracks and microannuli in annular cement sheaths. Several results are included that demonstrate the value of using such digital methods to study well cement, and it is shown that such experimental studies provide an improved understanding of cement sheath integrity. For example, it is seen that radial cracks do not form in symmetrical patterns and that microannuli do not have uniform geometries. Such experimental findings can potentially be used as benchmark to validate and improve cement integrity simulation tools.