Abstract
The anode potential has been shown to be highly dependent on anode geometry and orientation in the Hall–Héroult process. This work is an experimental laboratory scale study of the effect of anode geometry and orientation on bubble formation and detachment for four different anode designs: horizontal (surface facing downwards), inverted horizontal (surface facing upwards), vertical, rod (with both vertical and horizontal surface). From polarization curves, it was found that the vertical anode and the inverted horizontal anode operated at lowest potentials. Above 1 A cm−2, the vertical anode showed the lowest potential. As the current increases, the transition towards smaller noise is pronounced for the horizontal anode and to some degree for the vertical anode and inverted horizontal anode. Fast Fourier Transform analysis of chronoamperometric data gave a dominant frequency only for the horizontal anode and the rod anode. The bubble release time corresponded well with the dominant frequency for the rod anode for all current densities and for the horizontal anode at lower current densities. Only random bubble noise was found for the vertical and the inverted horizontal anode and is probably due to a bubble-induced convection effectively removing the bubbles.