Abstract
This paper addresses challenges with modelling of segmented power cable conductors using finite element analysis (FEA) for ampacity calculation. Segmented conductors improve current distribution by minimizing skin and proximity effects, thus reducing conductor losses. 2D FEA simulation offers high flexibility and accuracy beyond IEC 60287 for complex laying geometries, but the modelling of losses in segmented constructions using FEA has proven difficult due to the big difference in wire size and twisting pitch, requiring great amounts of computational power. In this paper a hybrid method is proposed, in which the IEC 60287 empirical formulae for segmented conductors are included in a 2D FEA model. The proposed method shows a good correspondence to IEC standard calculations, with deviations in conductor AC resistance of less than 1 %.