To main content

A flashing flow model for the rapid depressurization of CO2 in a pipe accounting for bubble nucleation and growth

Abstract

Flashing flow is encountered in many industrial systems involving nozzles, valves and decompression of vessels and pipes. In the context of CO2 capture and storage (CCS), the design of safe and efficient CO2 transportation systems requires accurate flashing models, e.g., for safety analysis of pipe fractures and to predict the mass flow through relief valves. We propose a homogeneous flashing model (HFM) for flashing flow accounting for the underlying physical phenomena of the phase change: bubble nucleation, coalescence, break-up and growth. Homogeneous nucleation is modeled using classical nucleation theory and heterogeneous nucleation is approximated with constant rates of bubble creation and mass transfer from liquid to vapor. The flashing flow model is fitted for CO2 pipe depressurization data at various initial conditions. We find that the same, constant model parameters can be applied for the whole set of depressurization cases considered, as opposed to the conventional homogeneous relaxation model which typically is tuned on a case-by-case basis. For depressurization paths where the fluid state passes close to the critical point, we demonstrate that an accurate description of the flashing process along the length of the pipe can only be achieved when both homogeneous and heterogeneous nucleation are accounted for.
Read publication

Category

Academic article

Client

  • Research Council of Norway (RCN) / 257579
  • Research Council of Norway (RCN) / 225868

Language

English

Affiliation

  • Norwegian University of Science and Technology
  • SINTEF Energy Research / Gassteknologi

Year

2023

Published in

International Journal of Multiphase Flow

ISSN

0301-9322

Volume

171

View this publication at Cristin