Abstract
Aims
Impaired standardization of echocardiograms may increase inter-operator variability. This study aimed to determine whether the real-time guidance of experienced sonographers by deep learning (DL) could improve the standardization of apical recordings.
Methods and results
Patients (n = 88) in sinus rhythm referred for echocardiography were included. All participants underwent three examinations, whereof two were performed by sonographers and the third by cardiologists. In the first study period (Period 1), the sonographers were instructed to provide echocardiograms for the analyses of the left ventricular function. Subsequently, after brief training, the DL guidance was used in Period 2 by the sonographer performing the second examination. View standardization was quantified retrospectively by a human expert as the primary endpoint and the DL algorithm as the secondary endpoint. All recordings were scored in rotation and tilt both separately and combined and were categorized as standardized or non-standa
Impaired standardization of echocardiograms may increase inter-operator variability. This study aimed to determine whether the real-time guidance of experienced sonographers by deep learning (DL) could improve the standardization of apical recordings.
Methods and results
Patients (n = 88) in sinus rhythm referred for echocardiography were included. All participants underwent three examinations, whereof two were performed by sonographers and the third by cardiologists. In the first study period (Period 1), the sonographers were instructed to provide echocardiograms for the analyses of the left ventricular function. Subsequently, after brief training, the DL guidance was used in Period 2 by the sonographer performing the second examination. View standardization was quantified retrospectively by a human expert as the primary endpoint and the DL algorithm as the secondary endpoint. All recordings were scored in rotation and tilt both separately and combined and were categorized as standardized or non-standa