Abstract
In the presented study a hyperspectral imager (400-700 nm) mounted on a stereo-microscope was used to separate differences in in vivo optical signatures identifying different pigment groups of bloom-forming phytoplankton and macroalgae by comparing spectral absorption, transmittance, and reflectance from 400-700 nm. The results show that the hyperspectral imager could be used to detect spectral characteristics on the μm level to calibrate, validate, identify, and separate objects with differences in color (optical fingerprinting). This information can be used for pigment group specific taxonomy (bio-optical taxonomy), eco-physiological information (e.g., health status), monitoring, and mapping applications.