Abstract
This paper reports on process synthesis and economics of combined methanol and CHP (combined heat and power) energy production from crude biooil, waste glycerol produced in biodiesel factories and biomass wastes using integrated reactor design for hydrogen rich syngas. This new process consists of three process steps: (a) pyrolysis of organic waste material to produce biooil, char and pyrogas; (b) steam assisted hydrogasification of the crude glycerol wastes, biooil mixed with pyrogas for hydrogen rich gas; and (c) a low temperature methanol synthesis process. The H2-rich gas remaining after methanol synthesis is recycled back to the pyrolysis reactor, the catalytic hydro-gasification process and the heat recovery steam generator (HRSG).
RESULTS: The breakeven price of the Hbiomethanol process yields positive net financial NPV and IRR above 600 USD per tonne. The total capital cost for a small-scale methanol plant of capacity 2 tonne h−1 combined with a cogeneration plant of capacity 2 MWe power is estimated to be 170.5 million USD.
CONCLUSION: Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventionally while the plant still maintains a high methanol yield. The integrated hydrogasification reactor and energy recovery design process minimizes heat loss and increases the process thermal efficiency. The Hbiomethanol process can convert any condensed carbonaceous material and liquid wastes, to produce methanol and CHP. Copyright © 2012 Society of Chemical Industry.
RESULTS: The breakeven price of the Hbiomethanol process yields positive net financial NPV and IRR above 600 USD per tonne. The total capital cost for a small-scale methanol plant of capacity 2 tonne h−1 combined with a cogeneration plant of capacity 2 MWe power is estimated to be 170.5 million USD.
CONCLUSION: Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventionally while the plant still maintains a high methanol yield. The integrated hydrogasification reactor and energy recovery design process minimizes heat loss and increases the process thermal efficiency. The Hbiomethanol process can convert any condensed carbonaceous material and liquid wastes, to produce methanol and CHP. Copyright © 2012 Society of Chemical Industry.