Abstract
Advances in reservoir characterization and modeling have given the industry improved ability to build detailed geological models of petroleum reservoirs. These models are characterized by complex shapes and structures with discontinuous material properties that span many orders of magnitude. Models that represent fractures explicitly as volumetric objects pose a particular challenge to standard simulation technology with regard to accuracy and computational efficiency.
We present a new simulation approach based on streamlines in combination with a new multiscale mimetic pressure solver with improved capabilities for complex fractured reservoirs. The multiscale solver approximates the flux as a linear combination of numerically computed basis functions defined over a coarsened simulation grid consisting of collections of cells from the geological model. Here, we use a mimetic multipoint-flux approximation to compute the multiscale-basis functions. This method has limited sensitivity to grid distortions. The multiscale technology is very robust with respect to fine-scale models containing geological objects such as fractures and fracture corridors. The methodology is very flexible in the choice of the coarse grids introduced to reduce the computational cost of each pressure solve. This can have a large impact on iterative modeling workflows.
We present a new simulation approach based on streamlines in combination with a new multiscale mimetic pressure solver with improved capabilities for complex fractured reservoirs. The multiscale solver approximates the flux as a linear combination of numerically computed basis functions defined over a coarsened simulation grid consisting of collections of cells from the geological model. Here, we use a mimetic multipoint-flux approximation to compute the multiscale-basis functions. This method has limited sensitivity to grid distortions. The multiscale technology is very robust with respect to fine-scale models containing geological objects such as fractures and fracture corridors. The methodology is very flexible in the choice of the coarse grids introduced to reduce the computational cost of each pressure solve. This can have a large impact on iterative modeling workflows.