Abstract
A modelling concept for analysing the fate of a subsea gas release is presented. The concept is based on a coupled Eulerian–Lagrangian method. The gas bubbles are modelled and tracked as parcels in a Lagrangian Discrete Phase Model (DPM). The continuous water and atmospheric gas are covered by an Eulerian VOF model. The model accounts for compressible gas effects, bubble size, gas dissolution and is fully transient. It compares well with experiments from a release depth of 7 m. The concept is applied to a set of release scenarios and the results are presented.