To main content

Active Oxidation of Liquid Silicon: Experimental Investigation of Kinetics

Abstract

Small scale laboratory experiments on the oxidation of liquid silicon have reproduced important features of the industrial refining of liquid silicon: active oxidation led to the formation of amorphous silica spheres as a reaction product. The boundary condition for active oxidation in terms of maximum oxygen partial pressure in the bulk gas was found to lie between 2·10−3 and 5·10−3 atm at T = 1,500 °C. The active oxidation of liquid silicon had linear kinetics, and the rate was proportional to bulk oxygen partial pressure and the square root of the linear gas flow rate, consistent with viscous flow mass transfer theory. Classical theory for unconstrained flow over a flat plate led to mass transfer rates for SiO(g) which were 2–3 times slower than observed. However, computational fluid dynamic modeling to take into account the effects of reactor tube walls on flow patterns yielded satisfactory agreement with measured volatilization rates.

Category

Academic article

Language

English

Author(s)

Affiliation

  • Norwegian University of Science and Technology
  • University of New South Wales
  • SINTEF Industry / Process Technology

Year

2012

Published in

Oxidation of Metals

ISSN

0030-770X

Volume

78

Issue

5-6

Page(s)

363 - 376

View this publication at Cristin