

Earth to Air Heat Exchangers (ETAHE)

Mark Murphy Mark.Murphy@sintef.no

Introduction

• What is an earth to air heat exchanger?

• What do they look like?

Wikipedia Solar thermal coll. Super insulation (optional) supply extract triple air air pane double low-e glazing supply extract air air Ventilation system with heat recovery

ground heat exchanger

Zhang (2009)

Mediå Skole - Grong, Norge

Jaer Skole

Rehau

Heat recovery

Rehau

Simulating an ETAHE

• What needs to be taken into consideration?

• What has been done before?

Wagner et al. 2000

Ground Temperature Simulation

- Simplified correlations with untouched temperature distribution in the background or fixed boundary conditions
- CFD close, but still contains approximations

 Ground water, surface water, heterogenous soil, vegetation on the surface

Available Simulation Tools

- Energy +
- TRNSYS
- WTK2 + other specially developed tools
- CFD ANSYS/COMSOL

CFD

• Results from Canada

J. Zhang, F. Haghighat (2005)

Velocity Vectors Colored By Static Temperature (c)

Aug 08, 2006 FLUENT 6.1 (3d, segregated, ske)

J. Zhang, F. Haghighat (2009)

CFD

• My Preliminary Results

Comsol Multiphysics Simulations

Simulating without CFD

- Requires assumptions
- Fully Developed Turbulent flow

 \Rightarrow Heat Transfer Correlations

 \Rightarrow Mechanically ventilated ETAHEs

Assumption

- Fully Developed Turbulent flow => Heat Transfer Correlations
- These models are then useful the size is generally speaking small and used for mechanical ventilation

Simulated System

Figure from Thiers and Peuportier (2008)

Trnsys Model

Simulated Bypass

 $(T_{avg} + x) < T_{outdoors} < T_{supply}$

Simulated Structures

- Small Houses
- Row Houses
- Small Office single pipe
- Small Office multiple parallel pipes

Results – Small House Trondheim

	Trondheim			
	[kWh]		Hours	
	Heating	Cooling	Defrosting	
Without ETAHE	1149.6	-21.1	1165	
With ETAHE	716.4	0	55	
<u>Bypass starts at</u>		-		
Tavg	686.6	0	55	
Tavg-1	693.9	0	55	
Tavg+1	681.9	0	55	
Tavg+2	680.0	0	55	
Tavg+3	679.4	0	55	
Tavg+4	681.4	0	55	
Tavg+5	685.8	0	55	

Energy Savings Potential within Parallel Piped ETAHEs

Air Exchange Rate [h ⁻¹]	1	2	3	4
Number of Pipes	5	10	15	20
Energy Savings Potential [kWh/m ²]	2 1	4 1	6.0	8.0

Extra Slides

• Small House Example

Graphical Output from TRNSYS

