Relative assessment of fatigue loads for offshore wind turbine support structures

DeepWind'2015

Lars Einar S. Stieng

Offshore Wind Turbine Technology Group Department of Civil and Transport Engineering Norwegian University of Science and Technology

05.02.2015

Introduction

- Motivation
- Idea
- 2 Methods
 - Setup
 - Approach

3 Results

- Prediction lines
- Mean deviation
- Alternate designs
- Selected results
- 4 Final remarks
 - Conclusion
 - Outlook

Motivation Idea

2 Methods

3 Results

Motivation Idea

Motivation

- Computational effort is a significant issue for time domain analyses of offshore wind turbines (OWTs)
- Standards require (minimum) 60 minute simulation lengths^{1,2}
- Many evaluations of the system needed for certification and design optimization

¹International Electrotechnical Commission (2009). Wind Turbines – Part 3: Design Requirements for Offshore Wind Turbines, International Standard, IEC 61400-3. 132 pp.

 $^{^2\,\}text{Det}$ Norske Veritas (2013). Design of offshore wind turbine structures, Offshore Standard, DNV-OS-J101. 214 pp.

Introduction

Methods Results Final remarks Motivation Idea

• Reduce the required simulation length for accurate fatigue assessment?

Introduction

Methods Results Final remarks Motivation Idea

- Reduce the required simulation length for accurate fatigue assessment?
- Predict the damage equivalent load (DEL) of a full length simulation from a shorter segment
- Use simple statistical methods to adjust for fluctuations on shorter time scales

Setup Approach

2 Methods

3 Results

Setup Approach

Setup

- OWT model is UpWind jacket from OC4 project³and NREL 5MW turbine⁴
- Full length 60 minute simulation run in FEDEM⁵at 4 different wind speeds, using 4 different realizations for each wind speed

³Vorpahl F., Popko W. and Kaufer D. (2011). Description of a Basic Model of the 'Upwind Reference Jacket' for Code Comparison in the OC4 Project under IEA Wind Annex XXX, IEA Wind Annex XXX.

⁴ Jonkman J., Butterfield S., Musial W. and Scott G. (2009). Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500-38060, National Renewable Energy Laboratory.

⁵Fedem Technology AS. (2014). Fedem User's Guide, Release 7.1. Fedem Technology AS: Trondheim, Norway.

Setup Approach

Setup

- OWT model is UpWind jacket from OC4 project³and NREL 5MW turbine⁴
- Full length 60 minute simulation run in FEDEM⁵at 4 different wind speeds, using 4 different realizations for each wind speed
- Two alternate designs with different outer diameters were also tested:
 - One design with diameters increased by 10%
 - $\bullet\,$ One design with diameters increased by 20%

³Vorpahl F., Popko W. and Kaufer D. (2011). Description of a Basic Model of the 'Upwind Reference Jacket' for Code Comparison in the OC4 Project under IEA Wind Annex XXX, IEA Wind Annex XXX.

⁴ Jonkman J., Butterfield S., Musial W. and Scott G. (2009). Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500-38060, National Renewable Energy Laboratory.

⁵Fedem Technology AS. (2014). Fedem User's Guide, Release 7.1. Fedem Technology AS: Trondheim, Norway.

Setup Approach

Approach

- Use the first 10 minutes of simulation time and calculate the axial force DEL in legs and braces
- Logarithmic transformation and linear regression of DEL vs time used to extrapolate to 60 minutes

Setup Approach

Approach

- Use the first 10 minutes of simulation time and calculate the axial force DEL in legs and braces
- Logarithmic transformation and linear regression of DEL vs time used to extrapolate to 60 minutes
- Four different schemes for utilizing the 10 min segment, see Table 1.

Table 1 : Prediction schemes

Names	Description		
PS1	DEL5 + DEL10		
PS2	5DEL2 + DEL10		
PS3	2DEL5 + DEL10		
PS4	5DEL2 + 2DEL5 + DEL10		

Introduction	Prediction lines
Methods	Mean deviation
Results	Alternate designs
Final remarks	Selected results

2 Methods

Prediction lines Mean deviation Alternate designs Selected results

four realizations

Figure 2: PS2, wind speed 8 m/s,

Prediction lines, PS1 and PS2, brace at water level

Figure 1 : PS1, wind speed 8 m/s, four realizations

Prediction lines Mean deviation Alternate designs Selected results

four realizations

Figure 4 : PS4, winds speed 8 m/s,

Prediction lines, PS3 and PS4, brace at water level

Figure 3 : PS3, wind speed 8 m/s, four realizations

Prediction lines Mean deviation Alternate designs Selected results

Mean deviation from true values, PS1 and PS4

Prediction lines Mean deviation Alternate designs Selected results

Prediction lines PS4, alternate designs

Figure 7 : 10% larger diameter, wind speed 8 m/s, four realizations

Figure 8 : 20% larger diameter, wind speed 8 m/s, four realizations

Prediction lines Mean deviation Alternate designs Selected results

Selected results

Table 2 : Wind speed 22 m/s, brace at water level

Model, scheme	True mean [N]	Predicted mean [N]	Mean deviation (% of true value)	
Base model, direct scaling of DEL10	1715	5538	223	
Base model, PS1	1715	1533	11	
Base model, PS2	1715	1696	2.4	
Base model, PS3	1715	1698	2.4	
Base model, PS4	1715	1696	2.3	
10% increased outer diameter, PS4	1696	1686	2.4	
20% increased outer diameter, PS4	1688	1670	2.4	

Conclusion Outlook

2 Methods

3 Results

Conclusion Outlook

Conclusion

- PS2, PS3, PS4 give good estimates, PS1 less so
- All methods show great improvement compared with direct scaling

Conclusion Outlook

Conclusion

- PS2, PS3, PS4 give good estimates, PS1 less so
- All methods show great improvement compared with direct scaling
- Methods are stable with respect to changing the design
- Promising for an optimization context

Conclusion Outlook

Conclusion

- PS2, PS3, PS4 give good estimates, PS1 less so
- All methods show great improvement compared with direct scaling
- Methods are stable with respect to changing the design
- Promising for an optimization context
- Less accurate (up to 12% error) for wind speeds below rated and leg elements, might limit applicability somewhat

Conclusion Outlook

Outlook

- Verify that the methods work for bending moment DEL
- Check stability of methods when changing design in a non-systematic way

Conclusion Outlook

Outlook

- Verify that the methods work for bending moment DEL
- Check stability of methods when changing design in a non-systematic way
- Significant increase in accuracy if segment is increased to 15 minutes?

Conclusion Outlook

Outlook

- Verify that the methods work for bending moment DEL
- Check stability of methods when changing design in a non-systematic way
- Significant increase in accuracy if segment is increased to 15 minutes?
- Possibility of using an initial 60 minute simulation to 'tune' the method and then use 10 minute segments with changed design and 'tuned' estimates

Supplementary 1: Some equations

DEL expression:
DEL =
$$\left(\frac{\sum_{i} n_{i} F_{i}^{m}}{N_{eq}}\right)^{1/m}$$

Linear regression equation after logarithmic transformation: $log_{10}(DEL) = a log_{10}(t) + b$

Supplementary 2: Linear regression lines using entire length

Supplementary 3: Mean deviations for schemes PS2 and PS3

Supplementary 4: Mean deviations for alternate models

Supplementary 5: Extended version of Table 2

Table 3 : Wind speed 22 m/s, brace at water level

Model, scheme	True mean [N]	Predicted mean [N]	Standard deviation true [N]	Standard deviation predicted [N]	Mean deviation (% of true value)
Base model, simple scaling of DEL10	1715	5538	13.45	121.8	223
Base model, PS1	1715	1533	13.45	22.26	11
Base model, PS2	1715	1696	13.45	38.46	2.4
Base model, PS3	1715	1698	13.45	39.35	2.4
Base mode, PS4	1715	1696	13.45	38.31	2.3
10% increased outer diameter, PS4	1696	1686	14.85	39.46	2.4
20% increased outer diameter, PS4	1688	1670	11.04	40.32	2.4