Assessing Smoothing Effects of Wind-Power around Trondheim via Koopman Mode Decomposition

Yoshihiko Susuki (JP)

Fredrik J. Raak (JP) Harold G. Svendsen (NO) Hans C. Bolstad (NO)

EERA DeepWind'2018 January 17

- Introduction
 - About JST Project / Why Smoothing Effect?
- Koopman Mode Decomposition (KMD)
 - Brief summary of nonlinear time-series analysis
- KMD-based Quantification of Wind-Power Smoothing
 - F. Raak, Y. Susuki et al., NOLTA, IEICE, vol.8, no.4, pp.342-357 (2017).
 - Definition and simple example
- Application to Wind-Data around Trondheim
 - Synthetic wind-power output
 - Quantification result
- Conclusion

Smoothing Effects of Wind-Power

- Reduction of fluctuations in wind-power by aggregation
- Importance of its assessment (or quantification) for managing large-scale introduction of wind power:
 - Large-term use --- planning w/ use of in-vehicle batteries
 - Short-term use --- controlling turbines / maintaining power quality

Susuki, Assessment of Wind-Power Smoothing via Koopman Mode Decomposition

Purpose and Contents

Quantifying Smoothing Effects of Wind-Power around Trondheim via Koopman Mode Decomposition

- I. Introduction of Koopman Mode Decomposition (KMD)
- 2. Review of KMD-based Quantification
 - F. Raak, Y. Susuki *et al.*, NOLTA, IEICE, vol.8, no.4, pp.342-357 (2017).
- 3. Application to Measured Data on Wind-Speed around Trondheim
 - Newly reported in this presentation

- Introduction
 - About JST Project / Why Smoothing Effect?
- Koopman Mode Decomposition (KMD)
 - Brief summary of nonlinear time-series analysis
- KMD-based Quantification of Wind-Power Smoothing
 - F. Raak, Y. Susuki et al., NOLTA, IEICE, vol.8, no.4, pp.342-357 (2017).
 - Definition and simple example
- Application to Wind-Data around Trondheim
 - Synthetic wind-power output
 - Quantification result
- Wrap-Up

Koopman Mode Decomposition (KMD)

Novel technique to decompose multi-channel, complex time-series into **modes with single-frequencies**, conducted directly from **data**

 $\{g_0, \ldots, g_m\}$ Finite-time data obtained in experiments or simulations under uniform sampling

$$g_{k} = \sum_{j=1}^{m} \tilde{\lambda}_{j}^{k} \tilde{V}_{j}, \quad g_{m} = \sum_{j=1}^{m} \tilde{\lambda}_{j}^{m} \tilde{V}_{j} + \eta_{m}$$

$$k = 0, \dots, m-1$$

For details, see the paper [C. Rowley, I. Mezic, et al., J. Fluid Mech., vol.641, pp.115-127 (2009)].

KMD-based Quantification (1/3) -- Derivation

2017.1.17

KMD-based Quantification (2/3) -- Definition

KMD-based Quantification (3/3) -- Example

- Introduction
 - About JST Project / Why Smoothing Effect?
- Koopman Mode Decomposition (KMD)
 - Brief summary of nonlinear time-series analysis
- KMD-based Quantification of Wind-Power Smoothing
 - F. Raak, Y. Susuki et al., NOLTA, IEICE, vol.8, no.4, pp.342-357 (2017).
 - Definition and simple example
- Application to Wind-Data around Trondheim
 - Synthetic wind-power output
 - Quantification result
- Wrap-Up

2017.1.17

Measurement Data around Trondheim

- 92-days long time-series of hourly wind speeds
 - 10 meters above ground / Mmean value for last 10 minutes before time of observation
- Converted into wind-power (in per-unit) via the static nonlinear power curve below

Data on Aggregated Wind-Power

Susuki, Assessment of Wind-Power Smoothing via Koopman Mode Decomposition

2017.1.17

Original Data and Reconstructed Data via KMD

Table 1. Variances of total powers P and of reconstructed time-series via KMD \tilde{P}

Case	$P_{\rm tot, first}$	$P_{\mathrm{tot,last}}$	$ ilde{P}_{ ext{tot, first}}$	$ ilde{P}_{ ext{tot,last}}$
${\rm Case}\;1\;$ #I and #2	0.10	0.08	0.12	0.06
${\rm Case}\;2\;$ #I and #3	0.11	0.09	0.12	0.08
Case $3 \# 2$ and $\# 3$	0.12	0.10	0.12	0.09
Lower Value of Variance!				

Susuki, Assessment of Wind-Power Smoothing via Koopman Mode Decomposition

2017.1.17

Quantification Result

- Introduction
 - About JST Project / Why Smoothing Effect?
- Koopman Mode Decomposition (KMD)
 - Brief summary of nonlinear time-series analysis
- KMD-based Quantification of Wind-Power Smoothing
 - F. Raak, Y. Susuki et al., NOLTA, IEICE, vol.8, no.4, pp.342-357 (2017).
 - Definition and simple example
- Application to Wind-Data around Trondheim
 - Synthetic wind-power output
 - Quantification result
- Wrap-Up

Summary and Take-Home Messages

Quantifying Smoothing Effects of Wind-Power around Trondheim via Koopman Mode Decomposition (KMD)

- KMD enables an extraction of dominant feature w/ clear timescale separation directly from complex wind-power data.
- KMD enables a quantification of smoothing effects of windpower around Trondheim ---how the smoothing is engineered by the choice of locations.

8.0°E 8.5°E 9.0°E 9.5°E 10.0°E 10.5°E

2017.1.17

