Low-frequency second-order drift-forces experimental validation for a Twin Hull Shape Offshore Wind Platform - SATH

saitec

offshore technologies



#### Layout

The Company

- Introduction to SATH concept
- Model testing motivation
- Experiments
- Numerical validation
- Main conclusions



# The Company

saitec offehore

saitec

offshore technologies Spin-off from International Infrastructure engineering company



Designing the future



SATH™ INNOVATIVE FLOATING WIND SOLUTION MAKING OFFSHORE WIND GLOBAL





# Introduction to SATH concept



#### Swinging Around Twin Hull



# Model testing motivation







#### Scale model



|                  | Scale model 1/36 | Full<br>prototype-<br>2MW |
|------------------|------------------|---------------------------|
| Length (m)       | 1.72             | 61.92                     |
| Width (m)        | 0.85             | 30.6                      |
| Total height (m) | 2.05             | 73.8                      |
| Draft (m)        | 0.2              | 7.35                      |
| Total Mass (kg)  | 82.8             | 3863116.8                 |
|                  |                  |                           |



Wind turbine Computer-controlled



**Qualysis** Track motion



Load cells mooring system



#### Experiments set-up







Soft Mooring Simple an linear setup for identification of hydrodynamic coefficients.

VCG to decouple the pitch motion from the mooring system forces.



#### Test campaign planning



#### Identification of mass properties



Characterization tests: decay; tilt; pull out



Calibration of waves



Tests in waves: periodic; irregular; pink noise



#### Characterization tests – Global verification of the structure behaviour





#### Tests in waves- Periodic waves



Extraction of the Mean Drift force Coefficients for different incidence angles and wave steepness

$$F = kx$$
$$MDC = \frac{F}{A^2}$$

K = mooring stiffness measured (N/m)X = mean displacement measured (m)F = mean drift force (N)A = wave amplitude (m)



EERA DeepWind'2019 | Araceli Martínez · Saitec Offshore Technologies | January 2019, Trondheim, Norway



#### Tests in waves- Periodic waves

#### Test Matrix:

Set 1: head waves; no wind; different steepness

Set 2: head waves; wind influence; Set 3: 20º waves; no wind;

| Real model |        |           |
|------------|--------|-----------|
| Period     | Height | Steepness |
|            |        |           |
| 6.000      | 1.116  | 0.020     |
| 6.000      | 4.680  | 0.083     |
| 7.980      | 1.692  | 0.017     |
| 7.980      | 4.320  | 0.043     |
| 7.980      | 8.640  | 0.086     |
| 9.000      | 2.088  | 0.016     |
| 9.000      | 5.256  | 0.042     |
| 9.000      | 10.512 | 0.083     |
| 10.000     | 2.900  | 0.019     |
| 10.980     | 7.992  | 0.043     |
| 10.980     | 15.984 | 0.086     |
| 13.020     | 4.392  | 0.017     |
| 13.020     | 11.016 | 0.043     |
| 13.020     | 19.800 | 0.078     |
| 16.500     | 7.488  | 0.020     |
| 16.500     | 15.480 | 0.042     |

Mean wave drift coeff. from vessel motion, tests in regular waves, Odeg. Restoring stiffness K=29.81 kN/m. Wind = 0. Full scale values.



Potential theory over-estimates the coefficients Favourable steepness dependency



#### Tests in waves- Irregular waves





#### Tests in waves- Irregular waves

#### Test Matrix:

Set 1: pink noise (0° & 20° incidence) Set 2: sea-states along the 50 years environmental contour (0° & 20° incidence) Set 3: sea-states representative of operational conditions (0° & 20° incidence)





Favourable steepness dependency































Hs = 9.7m Tp = 18s































### Main conclusions



- Soft mooring set-up Simplifications of results
- Only wave tests No extra phenomena (wind or current)
- Duration of the tests 3 hour sea-states
- Wave tank basin characteristics No reflection
- Potential theory Over-estimation of the results
- SATH Technology Non-linear response for different wave steepness
- Newman's Approximation Verified for SATH concept
- Optimization of the mooring system Adjustment of numerical models

#### Thank you for your attention Araceli Martínez Rubio aracelimartinez@saitec.es



offshore technologies