

Verification of Floating Offshore Wind Linearization Functionality in OpenFAST

Nicholas Johnson Jason Jonkman, Ph.D. Alan Wright, Ph.D. Greg Hayman Amy Robertson, Ph.D. EERA DeepWind'2019

16-18 January, 2019 Trondheim, Norway

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Introduction: The OpenFAST Multi-Physics Engineering Tool

- **OpenFAST** is DOE/NREL's premier open-source wind turbine multi-physics engineering tool
- FAST has undergone a major restructuring, w/ a new modularization framework (v8)
- Framework originally designed w/ intent of enabling full-system linearization, but functionality is being implemented in stages

Background: Why Linearize?

- **OpenFAST** primary used for nonlinear time-domain standards-based load analysis (ultimate & fatigue)
- Linearization is about *understanding*:
 - Useful for eigenanalysis, controls design, stability analysis, gradients for optimization, & development of reduced-order models

• Prior focus:

- Structuring source code to enable linearization
- Developing general approach to linearizing mesh-mapping w/n module-to-module coupling relationships, inc. rotations
- Linearizing core (but not all) features of InflowWind, ServoDyn,
 ElastoDyn, BeamDyn, & AeroDyn modules & their coupling
- Verifying implementation
- Recent work (presented @ IOWTC 2018):
 - Linearizing HydroDyn, & MAP++, & coupling
 - State-space implementation of wave-excitation
 & wave-radiation loads
 - This work Verifying implementation for FOWT

Module X, ZX, Z, Y $\dot{x} = X(x, z, u, t)$ $0 = Z(x, z, u, t) \quad with \left| \frac{\partial Z}{\partial z} \right|$ y = Y(x, z, u, t) $u = u |_{\infty} + \Delta u$ etc. $\Delta \dot{x} = A \Delta x + B \Delta u$ $\Delta y = C\Delta x + D\Delta u$ with $A = \left| \frac{\partial X}{\partial x} - \frac{\partial X}{\partial z} \right| \left[\frac{\partial Z}{\partial z} \right]^{-1} \frac{\partial Z}{\partial x}$ etc.

Background: State-Space-Based Wave Radiation

- Wave-radiation "memory effect" accounted for in HydroDyn by ^q direct time-domain (numerical) convolution
- Linear state-space (SS) approximation:
 - SS matrices derived from
 SS_Fitting pre-processor using
 4 system-ID approaches

NATIONAL RENEWABLE ENERGY LABORATORY

Background: State-Space-Based Wave Excitation

- First-order wave-excitation loads accounted for in HydroDyn by inverse Fourier transform
- Linear SS approximation:
 - SS matrices derived from extension to SS_Fitting pre-processor using system-ID approach
 - Requires prediction of wave elevation time t_c into future to address noncausality i.e. $\zeta_c(t) = \zeta(t + t_c)$

Background: Final Matrix Assembly

- D-matrices (included in G) impact
 all matrices of coupled system, highlighting important role of direct feedthrough
- While A^(ED) contains mass, stiffness, & damping of **ElastoDyn** structural model only, full-system A contains mass, stiffness, & damping associated w/ full-system coupled aero-hydro-servo-elastics, including FOWT hydrostatics, radiation damping, drag, added mass, & mooring restoring

Results: Campbell Diagram of NREL 5-MW Turbine Atop OC3-Hywind Spar

- Modules enabled: ElastoDyn, ServoDyn, HydroDyn, & MAP++
- Approach (for each rotor speed): Find periodic steady-state OP → Linearize to find A matrix → MBC → Azimuth-average → Eigenanalysis → Extract freq.s & damping

Results: Campbell Diagram of NREL 5-MW Turbine Atop OC3-Hywind Spar – w/ Aero

- Modules enabled: ElastoDyn, ServoDyn, HydroDyn, MAP++, AeroDyn, & InflowWind
- Approach (for each wind speed): Define torque & blade pitch → Find periodic steadystate OP → Linearize to find A matrix → MBC → Azimuth-average → Eigenanalysis → Extract freq.s & damping

Results: Time Series Comparison of Nonlinear & Linear Models

- Modules enabled: ElastoDyn, ServoDyn, HydroDyn, & MAP++
- Nonlinear approach (for each sea state): Time-domain simulation w/ waves
- Linear approach (for each sea state): Find steady-state OP → Linearize to find A, B, C, D matrices → Integrate in time w/ wave-elevation input derived from nonlinear solution

NATIONAL RENEWABLE ENERGY LABORATORY

Conclusions & Future Work

- Conclusions:
 - Linearization of underlying nonlinear wind-system equations advantageous to:
 - Understand system response
 - Exploit well-established methods/tools for analyzing linear systems
 - Linearization functionality has been expanded to FOWT w/n OpenFAST
 - Verification results:
 - Good agreement in natural frequencies between OpenFAST & FAST v7
 - Damping differences impacted by trim solution, frozen wake, perturbation size on viscous damping, wave-radiation damping
 - Nonlinear versus linear response shows impact of structural nonlinearites for more severe sea states
- Future work:
 - Improved OP through static-equilibrium, steady-state, or periodic steady-state determination, including trim
 - Eigenmode automation & visualization
 - Linearization functionality for:
 - Other important features (e.g. unsteady aerodynamics of AeroDyn)
 - Other offshore functionality (SubDyn, etc.)
 - New features as they are developed

Carpe Ventum!

Jason Jonkman, Ph.D. +1 (303) 384 – 7026 jason.jonkman@nrel.gov

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Approach & Methods: Operating-Point Determination

- A linear model of a nonlinear system is only valid in local vicinity of an operating point (OP)
- Current implementation allows OP to be set by given initial conditions (time zero) or a given times in nonlinear time-solution
- Note about rotations in 3D:
 - Rotations don't reside in a linear space
 - FAST framework stores module inputs/outputs for 3D rotations using 3×3 DCMs (A)
 - Linearized rotational parameters taken to be 3 small-angle rotations about global X, Y, & $Z(\Delta \vec{\theta})$

Approach & Methods: Module Linearization

Module	Linear Features	States (<i>x, z</i>)	Inputs (<i>u</i>)	Outputs (y)	Jacobian Calc.
ElastoDyn (ED)	 Structural dynamics of: Blades Drivetrain Nacelle Tower Platform 	 Structural degrees-of- freedom (DOFs) & their 1st time derivatives (continuous states) 	 Applied loads along blades & tower Applied loads on hub, nacelle, & platform Blade-pitch-angle command Nacelle-yaw moment Generator torque 	 Motions along blades & tower Motions of hub, nacelle, & platform Nacelle-yaw angle & rate Generator speed User-selected structural outputs (motions &/or loads) 	 Numerical central- difference perturbation technique*
HydroDyn (HD)	 Wave excitation Wave-radiation added mass Wave-radiation damping Hydrostatic restoring Viscous drag 	 State-space-based wave-excitation (continuous states) State-space-based radiation (continuous states) 	 Motions of platform Wave-elevation disturbance 	 Hydrodynamic applied loads along platform User-selected hydrodynamic outputs 	 Analytical for state equations Numerical central- difference perturbation technique* for output equations
MAP++ (MAP)	 Mooring restoring 	 Mooring line tensions (constraint states) Positions of connect nodes (constraint states) 	 Displacements of fairleads 	 Tensions at fairleads User-selected mooring outputs 	 Numerical central- difference perturbation technique*
*Numerical central -difference perturbation technique (see paper for treatment of 3D rotations) $\frac{\partial X}{\partial x}\Big _{op} = \frac{X\left(x\Big _{op} + \Delta x, u\Big _{op}, t\Big _{op}\right) - X\left(x\right)}{2\Delta x}$				$-X\left(x\Big _{op}-\varDelta x,u\Big _{op}\right)$	$(t _{op})$ etc.

Approach & Methods: Glue-Code Linearization

 $\Delta u =$

- Module inputs & outputs residing on spatial boundaries use a mesh, consisting of:
 - Nodes & elements (nodal 0 connectivity)
 - Nodal reference locations \cap (position & orientation)
 - One or more nodal fields, 0 including motion, load, &/or scalar quantities
- Mesh-to-mesh mappings involve:
 - Mapping search Nearest 0 neighbors are found
 - Mapping transfer Nodal fields Ο are transferred
- Mapping transfers & other module-to-module input-output coupling relationships have been linearized analytically

