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• Leading edge erosion is caused by raindrops 
impacting the leading edge near to the tip 
of the blade, where the local velocity can be 
close to 100m/s (225mph)

• It is a big problem for the industry (their 
biggest on blades according to a survey 
carried out among OEMs and owner 
operators)

• It costs the industry in two ways:
• the aerodynamic performance 

decreases as erosion gets worse
• Repairs need to be carried out 

approximately every 5 years
• 108 turbines x 6 days at €100k per day for a 

jack up rig is €65m in vessel hire, before lost 
revenue and the cost of repairs has been 
accounted for!

Leading Edge Erosion



• If the speed limit of leading edge erosion is removed 
then tip speeds could increase to 120m/s or more

• A 30% increase on current speeds!
• A nacelle mass trend derived from a survey of 

current nacelles has shown that the estimated 
nacelle mass for a 20MW turbine would be:

• 1025t at 90 m/s
• 815t at 120 m/s
• This would lead to a substantial decrease in 

tower cost as well as nacelle cost
• Jamieson et al [1] demonstrated a turbine CAPEX 

reduction of 20% for a 5MW turbine when increasing 
the tip speed and moving to a downwind rotor

• Dykes et al [2] demonstrated a 5.5% reduction in 
LCOE by moving from 80 m/s to 100m/s flexible 
blade

Benefits of Higher Tip Speeds

y = 28,694x + 172442
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• The LEFT project is a collaboration between:
• Radius Aerospace UK
• Performance Engineered Solutions Ltd
• The Offshore Renewable Energy Catapult

• It aims to transfer the use of electroformed Ni-Co leading 
edge protection from the aerospace industry to wind turbines

• The Ni-Co solution has demonstrated extremely good rain 
erosion performance:

• It lasts for 85 hours in the ORE Catapult rain erosion 
rig at 173 m/s

• Typical solutions last for around 15 hours at 120 m/s
• However, it will be challenging to integrate with wind turbine 

blades:
• The alloy has high relative stiffness compared to the 

blade 
• Lightning protection

• The LEFT project aims to address these issues

The LEFT (Leading Edge for Turbines) Project



Adhesive Validation Methodology
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Global and Sub-Models



• The test rig was designed and built by PES with 
rig control using a Raspberry Pi developed by 
ORE Catapult

• The rig is based on a design by Sorenson et al 
[3] and applies pure bending moments to the 
ends of the specimen

• Enables steady crack growth in mode 1 
and mode 2

• Calculated values are not dependent on 
the crack length

• The crack length and angle of the arms were 
determined using a custom image processing 
algorithm developed in OpenCV

Fracture Mechanics Rig
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[3] Sorenson B (2004) A General Mixed Mode Fracture Mechanics Test Specimen, DTU Report



Fracture Mechanics Testing
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• The experimental tests have been 
modelled in ANSYS:

• SOLID185 elements for adhesive 
and substrate

• INTER205 elements with bi-
linear cohesive zone model

• BEAM188 Beam elements 
connect remote point at which 
beam angular displacements are 
applied to the substrate nodes 

• The STP Adhesive proved very difficult 
to model in mode 2 because of its very 
low modulus

Finite Element Modelling Approach



Epoxy Adhesive Results
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Sample 6 - 3M DP490 - Mode 1 Fracture Toughness

Sample 7 - 3M DP490 - Mode 1 Fracture Toughness

Sample 7 - 3M DP490 - Mode 1 Fracture Toughness (Simulation)

Sample 7 - 3M DP490 - Mode 1 Fracture Toughness (Simulation - Thin Assumption)
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Silane Terminated Polymer Adhesive Results 
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Critical Load Case/ Position for Sub-Model
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Sub-Model Results: Epoxy Adhesive



Sub-Model Results: STP Adhesive



• A blade meshing tool has been developed which can 
generate a global solid mesh of the blade and a detailed 
solid mesh of the tile system

• A model chain has been developed which can accurately 
predict the adhesive stresses in the Ni-Co tile system

• It can also be used with more detailed models developed 
from CAD as long as they occupy the same position in space 
as the global blade mesh

• The next steps are:
• Produce a demonstrator of the leading edge system
• Investigate how the interface between tiles affects 

the stress
• Look at certification
• Integrate the tile into the blade lightning system

Conclusions
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