

A Computational Model to replicate WARER **Experiments for Blade Erosion Studies**

Dylan Edirisinghe, Edmond Tobin, Lilibeth Zambrano & Ashish Vashishtha South East Technological University- Carlow Campus, Ireland

Whirling Arm Rain Erosion Rig (WARER)

An experimental setup designed to study the rain-induced erosion on blade coatings.

In WARER

an arm holding the coated specimen rotates under artificial rain, experiencing droplet impacts

Limitation

replicating realistic rainfall distributions (Droplet Size Distributions) compromise the **real site accuracy**

Approach

building a computational model to replicate WARER easily accommodate **regional rain distributions**

Computational WARER model

Developed erosion model has three steps

Validation 2 mm droplets with impact speed of 129 m/s on aluminum cladded (AA1100) specimen

Quantitative validation

time taken for erosion initiation

Discrepancy

Experiment: Wide scar spreading at the center of the specimen (after several hours of testing) **Model:** triangular scar shape

Qualitative validation

progression of the erosion scar

Left side: Model scar contour | Right side: Experimented specimen *testing time | darkest blue area of each figure refer the damage accumulation 1.0, 0.7, 0.8, 0.9 respectively

Assumption

droplets may trap in the vortex region created by the high-speed specimen

Application

With Uncertainty Quantification framework,

the erosion model can be applied for regional rainfalls

Acknowledgement

This research has been funded by the Sustainable Energy Authority of Ireland (SEAI) under the Research, Development & Demonstration Funding Programme, Grant number 21/RDD/671 as part of the project **SPOTBlade** (Strategies for erosion and fouling Protection of Offshore Turbine Blades)

References

1. Mishnaevsky Jr. L., Hasager C.B., Bak C., Tilg A.M., Bech J.I., Rad S.D. and Fæster S. (2021) Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renewable Energy 169:953 969 (doi.org/10.1016/j.renene.2021.01.044) 2. Tobin E.F., Young T.M., Raps D. and Rohr O. (2011) Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities, Wear 271, 2625–2631, 2011

EERA DeepWind conference, 15-17 January 2025 Presenting the best offshore wind R&I since 2004