

Load effect analysis of semi-submersible floating wind turbine tower, considering sum-frequency wave excitation

Haozhe Bai^{1,2*}, Shuaishuai Wang², Torgeir Moan², Kun Xu¹, Min Zhang¹ and Huajun Li¹

¹College of Engineering, Ocean University of China, Qingdao, China

² Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway

- Most adopted type: semi-submersible FWT
- The sum-frequency wave load effects on semi-submersible FWT have attracted minimal focus
- A comprehensive and progressive research project "OUCwind-HFDR"
- **Investigates the WIHF structural responses** of a semi-submersible FWT under various environmental conditions

Results and Discussion

- - height of 3 m and a p is selected Rated, cut-out, and 1. special wave period
 - 2. select based on th
 - 3. largest significant
 - Cut-in condition: significant wave > Ten typical wind and wave combined conditions

peak period of 6 s	Condition	Load cases	U _{hub} (m/s)	TI	Hs (m)	Tp (s)	
	Cut-in condition	LC1	5	23.04%	3.00	6.00	
		LC2	11.4	13.41%	4.15	6.00	ł
parked conditions:	Rated condition	LC3	11.4	13.41%	5.44	8.00	ł
		LC4	11.4	13.41%	7.50	14.78	ł
od of 6s		LC5	25	13.23%	5.17	6.00	i
00 01 05	Cut-out condition	LC6	25	13.23%	7.00	8.00	ł
ne RAO analysis		LC7	25	13.23%	10.48	14.62	i
ie fuite analysis		LC8	34.8	14.77%	5.22	6.00	ł
t wave height	Parked Condition	LC9	40.6	14.77%	7.15	8.00	i
e wave neight		LC10	40.6	15.61%	14.78	14.67	ł

Conclusions

- ULS check for DTU 10-MW reference wind turbine
- Most checks of LHM pass except for the column buckling check under particularly severe conditions, and the rated condition is the most unfavourable condition.
- All checks of NHM fail to pass under rated, cut-out, and parked conditions. Moreover, as the wave conditions become more severe, the check coefficients of all checks are farther away from the safety criterion.

II. dua duma maia

Duality a charle as officient Duality a charle as officient

(b) The PSD of tower-top shear force under IH6T11 (left) and IH10T14 (right) (c) The PSD integral (left) and statistics (right) of tower-top shear force

- The high-frequency peak frequencies are 0.33 Hz and 0.328 Hz, respectively, which are remarkably close to each other.
- A proportional coefficient α is defined by I_{HF}/I_{TF} . The α s under IH6T11 and IH10T14 reach to 0.25 and 0.34, respectively. Additionally, the maximum and STD of tower-top shear force are respectively underestimated by linear response by 21.57 % and 17.19 % under IH6T11, and 17.29 % and 23.39 % under IH10T14.

Load condition	model	Yielding Check coefficient	for shell	for column
Cut-in LC1	LHM	6.1784 (pass)	5.9084 (pass)	0.3782 (pass)
	NHM	2.2187 (pass)	1.5127 (pass)	0.8682 (pass)
Datad IC2	LHM	1.8466 (pass)	1.7610 (pass)	0.8531 (pass)
Rateu LUS	NHM	0.7285 (<mark>fail</mark>)	0.6023 (<mark>fail</mark>)	2.2439 (<mark>fail</mark>)
Cut-out LC6	LHM	3.2189 (pass)	1.9339 (pass)	0.5558 (pass)
	NHM	0.4299 (<mark>fail</mark>)	0.2596 (<mark>fail</mark>)	3.6099 (<mark>fail</mark>)
Parked LC10	LHM	2.0540 (pass)	1.9596 (pass)	1.2262 (<mark>fail</mark>)
	NHM	0.2820 (<mark>fail</mark>)	0.1882 (<mark>fail</mark>)	5.7328 (<mark>fail</mark>)

Remarkable conclusions

- Experimental results show that WIHF structural loads are significant to the total structural loads under irregular wave conditions, and the extent of impact is positively correlated with the increase in the severity of sea conditions.
- The second-order high-frequency wave loads could amplify the high-frequency structural responses caused by the 3P and resonance effects.
- The second-order high-frequency wave loads could increase the aerodynamic force through increasing the components of the natural frequency of the wind turbine, but it has minor effects on the components of the rotational effects of rotor.
- Considering the second-order sum-frequency wave load effects, the most dangerous condition for the ULS check for the critical section of DTU-10-MW reference wind turbine is shifted to the parked condition from the rated condition.

Acknowledgement and Contact

(c) The PSDs of nacelle acceleration, tower-top shear force, tower-bottom bending moment, and aerodynamic force

- It could be observed that there are two peaks in the wave-frequency region. The left one equal to 0.1 Hz corresponds to the rotor rotational frequency (1P), and the right one corresponds to the wave peak period.
- Two peaks in the high-frequency region both have considerable disparities between NHM and LHM. Among these two peaks, the left one equal to 0.3 Hz is associated with the blade passing frequency (3P), and the right one close to 0.33 Hz is relevant with the natural frequency of the wind turbine with an elastic boundary.

- > Acknowledgement
- The support provided by China Scholarship Council (CSC) during a visit of Haozhe Bai to the Norwegian University of Science and Technology in Trondheim, Norway is acknowledged.
- The work is also supported by the Young Elite Scientists Sponsorship Program for doctoral student by CAST
- 🕨 Contact
- Email: bhz@stu.ouc.edu.cn

Haozhe Bai 🖉 Edit

PhD Candidate at Ocean University of China · Position · Ocean University of China China *Website*

99 Exchanged PhD student at NTNU in Norway