

Grid and Market Impacts of 10 GW Norwegian **Offshore Wind**

Liam Dauchat¹⁻², Magnus Korpås¹ 1. Department of Electric Energy, NTNU, Trondheim, Norway 2. Department of Mechatronic Electrical Energy and Dynamic Systems, UCLouvain, Belgium

INTRODUCTION

Growth in electricity demand and climate goals have set the North Sea at the center of the future European energy landscape.

Norway has a goal of 30GW of offshore wind by 2040 and has two projects in the advanced stage of planning in the North Sea, Sørlige Nordsjø II and Utsira Nord.

Previous research have focused on Net Transfer Capacity analysis to study the economic benefits of those wind farms in the countries of connection.

We conduct a power flow analysis at the European transmission level to analyze the integration potential of those wind farms and their grid and market impacts under different connection configurations.

Additional information

Scenario	New Wind Farms [GW]	Link to NO [GW]	Link to GB [GW]
RAD	5	5	-
HYB	5	2.5	2.5
HYB^+	5	5	2.5
CON	-	2.5	2.5

METHOD

GW	 Towards NO Towards GB 	Norwegian Links	
5 -			0.0 Branch utilisation
3 -			
2 -		化合物 化合物 化合物合物 化合物分解结构合物合物合物合物	I Destandaria
1 - 0 -			555

Figure 3. Annual AC lines utilization

Figure 1. Dynamic utilization of links connecting the wind farms to Norway and Great-Britain

		Objective	Fuel	Hydro	\mathbf{User}
	REF	72.92	61.10	11.81	161.74
	RAD	69.99	59.38	10.60	159.67
	HYB	70.21	59.34	10.88	160.04
T_{a} 1_{a} 2	HYB^+	69.96	59.42	10.54	159.66
Results, reduction in operational	CON	72.42	61.43	10.99	160.53
& user electricity costs in billions of euros	Savings Δ_{abs}				
m onnons of curos.	RAD	2.93	1.72	1.21	2.07
	HYB	2.70	1.77	0.94	1.71
	HYB^+	2.96	1.68	1.28	2.08

Figure 2. Economic benefits of the different scenarios in Per Unit

COSTS & BENEFITS

Decrease hydro operating costs. Increase price convergence & PHS utilization. Increase English exports through Norway. Cause a redispatch of Danish exports to Europe. Decrease imports in the country of connection by consuming & storing their production. Decrease fuel costs by replacing thermal units. Production flows towards mainland Europe.

Costs and benefits aren't localized in the same zones. Some benefits are observed far from the North Sea. Risk of blocking expansion candidates. Reallocation mechanisms are needed.

Hybrid links with maximum capacity to Norway bring the most operational costs savings to the system and position Norway as a nearexclusive exporter of electricity.