Improved Monte Carlo simulation method for OWT design exposed to Tropical Cyclones

Paul Renaud¹, Nicolas Raillard², Jean-François Filipot¹ ¹ France Energies Marines, Plouzané, France | ² IFREMER, Plouzané, France

OROWSHI Project Objectives

- To improve the current method recommended by IEC 61400-1 (Ishihara & Yamaguchi, 2015)
- To provide a versatile method applicable to any basin to derive the N-year wind speed at hub height

OROWSHI Wind Model

SYMMETRIC RADIAL PROFILE

- Model from <u>Willoughby et al., 2006</u>
- Fitted on SAR dataset (Vinour *et al.*, 2024)

Application

US East Coast: 77.82°W 33.44°N

Parameter	PDF
Pressure difference	GA
Radius of maximum wind speed	IG
Radius of 34-kt	WEI
Maximum wind speed	IGAMMA
Storm translation speed	GA
Storm direction	Circular KDE
Distance to location	LOGITNO
Bearing to location	Circular KDE

ASYMMETRIC RADIAL PROFILE

- Model from <u>Olfateh et al., 2017</u>
- Fitted on SAR dataset (Renaud *et al.*, 2025)

$$V_{as}(r) = \epsilon V_s(r) \sin(\delta + \alpha) \left[e \left(\frac{R_a}{r}\right)^D e^{-\left(\frac{R_a}{r}\right)^D} \right]^{1/2}$$

Adjustable parameters: ϵ , R_a , D, α Function of V_m, R_m, C (translation speed)

VERTICAL EXTRAPOLATION

- Log law
- Drag coefficient from <u>WASP</u> (Bouin *et al.*, 2024)
- Consistent with in-situ data (Renaud *et al.*, 2025)

50-years

wind speed

at 200 m (m/s)

56.7

JAPAN: 129.62°E 33.70°N

Ν

Parameter	PDF
Pressure difference	GA
Radius of maximum wind speed	IG
Radius of 34-kt	WEI
Maximum wind speed	IG
Storm translation speed	WEI
Storm direction	Circular KDE
Distance to location	LOGITNO
Bearing to location	Circular KDE

Conclusion and Perspectives

- MCS applied to two sites of interest in different basins
- GoF criterion for model selection
- Uncertainty of the extreme wind from MCS

Implementation in a R/Shiny app

References

- Ishihara, T. & Yamaguchi, A. (2015) Prediction of the extreme wind speed in the mixed climate region by using Monte Carlo simulation and measure-correlate-predict method. Wind Energy
- Bouin, M.-N., et al. (2024) The wave-age dependent stress parameterization (WASP) for momentum and heat turbulent fluxes at sea in surfex v8.1. Geoscientific Model Development Discussions
- Vinour, L., et al. (2024) Review and Improvement of Tropical Cyclone Symmetric Surface Wind Parametric Models Using SAR Imagery, Journal of Applied Meteorology and Climatology
- Renaud, P., et al. (2025) Extreme wind speeds in Tropical Cyclones using parametric models (in preparation)

This work is part of the OROWSHI project which receives funding from France Energies Marines and its members and partners, as well as French State funding managed by the French National Research Agency under the Investments for the Future Programme (ANR-10-IEED-0006-34).

al