

Application of OMA for Low-Frequency Modes Detection in FOWT: Numerical Study on OC4-DeepCwind Semi-Submersible

Abdulelah Al-Ghuwaidi¹, Ajie Pribadi², Wout Weijtjens¹, Christof Devriendt¹

¹OWI-lab, Department of Applied Mechanics (MECH), Vrije Universiteit Brussel, Pleinlaan 2 1050 Brussels, Belgium ² Ships and Marine Technology Division, Department of Civil Engineering (FEA15), Ghent University, Technologiepark 60 9052 Ghent, Belgium

- Floating Offshore Wind Turbines (FOWTs) have huge potential in harvesting wind energy for sites with deeper water depth (more than 50m) [1].
 - However, their commercialization has been hindered by high **operational and** maintenance costs (OPEX) [2].

2 Scope of Research

- The **dynamics** of mooring systems, floating platform and wind turbine are more complex, leading to greater uncertainties and higher costs [3].
 - Structural Health Monitoring (SHM) systems can mitigate these uncertainties and reduce OPEX cost.

BEL-Float

Catalyzing the Belgian industrial expertise in floating wind through academic innovation

3 Research Question

Can we reliably detect the platform **low-frequency** rigid body modes (e.g., surge, sway..) using **Operational Modal Analysis (OMA)**?

3 Methodology 3.2 PSD & Stabilization diagram 3.1 Time-domain Analysis (OpenFAST) Low-frequency Design values FA1 peak Tp 10 s

Conclusion

L

Low-frequency and 1st **tower** modes are estimated across the LCs. Higher damping values of surge mode are noticed compared to FA1. **Rotor** harmonics and **wave** frequencies are also visible in the chart. 5.

- Window length above 300s is needed for the modal parameter estimation.
- Frequency band of 0-1 Hz yielded a good estimation of the low-frequency modes.
- Surge and Sway are the most sensitive modes to the OMA settings for accurate detection.
- Placing accelerometers in platform is essential to detect the FOWT motions, particularly yaw.
- The tracking chart shows the low-frequency modal properties are sensitive to the specific LC.

Acknowledgements

The authors would like to thank the Belgian Ministry of Economic Affairs for their support with the ETF project **BEL-Float**.

References

- [1] B. Nuno and F. Margarida. Emergence of floating offshore wind energy: Technology and industry. Renewable and Sustainable Energy Reviews, 99:66–82, 2019.
- K. Hyoung-Chul, K. Moo-Hyun, and C. Do-Eun. Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals. Ocean Engineering, 188:106226, 2019. [3] Mone, C., Hand, M., Bolinger, M., Rand, J., Heimiller, D., Ho, J., 2015. Cost of Wind Energy Review, vol.2017

