Gradient-based design optimization of floating wind turbines using surrogate models for hydrodynamic coefficients

Peter Rohrer¹ (<u>peter.j.rohrer@ntnu.no</u>), Erin Bachynski-Polić¹, John Marius Hegseth² ¹Department of Marine Technology, NTNU – Trondheim, Norway, ²Vind AI – Oslo, Norway

Substructure Optimization

Vary pontoon length and outer column radius

Subject to static pitch, total pitch, and nacelle acceleration constraints in 12 conditions

Design Space Sweep

- No impact of surrogate variations on optimal design
- Minimal impact of surrogate variations on convergence
- Variable bounds and constraints worth further investigation
- Intuitive optimal design to minimize mass in absence of additional constraints

Tower-Substructure Optimization

Vary outer column radius, central column radius, tower radius and wall thickness along the length of the tower, and pontoon length, width, height

Subject to static pitch, total pitch, nacelle acceleration, tower fatigue, tower buckling, and tower natural frequency constraints in 12 conditions

- Optimizer decreases cost of initial, infeasible design
- Tower structural constraints dominate optimal design •
- Little impact of surrogate variations on optimal tower design
- No substructure structural constraints applied to impact design
- Significant impact of surrogate and start point variations on convergence •

