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Introduction

In offshore and coastal engineering, long and slender cables or rods
that are employed for towing or mooring of floating structures, belong
to the most important research topics. In this work, we consider the
shear- and torsion-free nonlinear Kirchhoff rod formulation developed
in [1] for such applications. To solve the corresponding governing
equations, nodal and isogeometric finite elements have been employed
in [1] and [2], respectively.
In this work, we give an overview and attempt to gain a deeper un-
derstanding of the nodal and isogeomtric discretization schemes for
the rod formulation [1]. We discuss the space of the resulting discrete
solution, which is in multiple copies either of the manifold R3 × S2

or the Euclidean space R3. We compare the semi-discrete formula-
tion, matrix equations, and computational cost of each discretization
variant, and illustrate our findings via numerical examples of cables
commonly employed as mooring lines.

An exemplary mooring line

●A mooring line of initial length of 627 m [5, p.257].
● Logarithmic current speed profile.
● 40 discrete elements and 4 iterations required at each time step.
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Figure 1: Snapshots of the studied mooring line, computed with cubic C1 isogeometric discretization.

Figure 2: Averaged computing time per iteration and time step.

Conclusions and outlook

Discretizing the rod formulation [1] using nodal finite elements and
preserving the unit sphere structure for the nodal directors leads to
zero nodal axial stress values. We studied five discretization variants
which generally lead to the same final rod configurations. For the
studied benchmark, using the nodal scheme generally leads to bet-
ter accuracy in the deformations. Nevertheless, using isogeometric
discretizations requires less computation time per iteration and time
step.
Future work includes investigations and elimination of membrane
locking on the studied semi-discrete rod formulations and develop-
ment of other strain measures that tackle zero nodal stress values.
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Nonlinear rod formulation

Variational formulation in a continuous setting
Consider the following set for the rod configurations [1]:

D ∶= {φ ∈ C2 ([0, L],R3) , ∣φ′∣ > 0, φ(0, t) = 0, φ′ (0, t) = E3} ,

where C2[0, L] is the space of C2 continuous functions on [0, L], φ = φ(s, t), (s, t) ∈ [0, L] × [0, T ] is the
configuration of Kirchhoff rods that are initially straight, shear-, torsion-free, transversely isotropic, and depend on
the arc-length s and time t.
The weak formulation of the studied rods [1] is:

∫

S

0
δφ ⋅ (M (φ′) ∇̂φ̇ φ̇ + B (φ′, φ′′)

T
σ − f ext

) d s = 0 .

For more details on the derivation of the weak form and more discussions, we refer to [1].

Spatial discretization
The studied rod formulation [1] requires at least C1-continuity. One can spatially discretize φ(s, t) ∈ D using
isogeometric finite elements [2] as follows:

φ(s, t) ≈ φh (s, t) =
m

∑
i

Bi (s)xi (t) = B(s)q ,

where Bi, 1 ≤ i ≤ m denotes smooth spline basis functions of degree p and conitnuity Cr, 1 ≤ r ≤ p − 1, and
q = q(t) ∈ (R3)m is the vector of unknown time-dependent coefficients.
Alternatively, one can spatially discretize φ(s, t) using nodal finite elements based on cubic Hermite spline functions
[1] as follows:

φh(s, t) =
ne

∑
e=1
(H1x

e
1 +H2d

e
1 +H3x

e
2 +H4d

e
2) =H(s) q̄ ,

where Hi, 1 ≤ i ≤ 4, is the standard cubic Hermite spline function, xe
j ∈ R3 and de

j ∈ S2, j = 1, 2, is the nodal
position and director at the j-th node of the e-th element, 1 ≤ e ≤ ne, respectively. Here ne denotes the number of
elements and q̄ = q̄(t) ∈ (R3 × S2)nn the vector of unknown time-dependent coefficients, where nn = ne + 1 is the
number of nodes. Since the defined director field [1] belongs to the unit sphere S2, preserving this structure at the
nodes requires an additional constraint of unit nodal directors:

de
j ⋅ d

e
j = 1 , 1 ≤ e ≤ ne , j = 1, 2 ,

which can be enforced either strongly using the Lagrange multiplier method or weakly using the penalty method.
Furthermore, when using the Lagrange multiplier method, one can eliminate the additional variable field of the
Lagrange multipliers using the nullspace method. For more details on this, the resulting semi-discrete formulation,
and matrix equations, we refer to [3].

Discretization scheme Discrete
solution

System
matrix

ndof

Isogeometric discretizations R3 m sparse,
symmetric(1)

3[ne(p − r) +
r + 1]

Note that the axial stress resultant is not constrained to zero at any point and the discrete director field
lives in S2 at any point of the discrete rod configuration.
Nodal discretization scheme without unit nodal director constraint R6 nn sparse,

symmetric
6(ne + 1)

Note that the nodal axial stress is not constrained to zero, however, nodal directors and director defined
within elements live in different spaces: R3 and S2, respectively.
Nodal discretization strong enforcement using Lagrange (R3 × S2)nn sparse, non- 7(ne + 1)
scheme with unit nodal multiplier method symmetric
director constraint strong enforcement with reduced equa- (R3 × S2)nn sparse, non- 6(ne + 1)

tions using Lagrange multiplier method symmetric(2)
and nullspace method
weak enforcement using penalty method (strictly)(3)

R6 nn

sparse,
symmetric

6(ne + 1)

Note that nodal axial stress is zero, however, the discrete director field lives in S2 at any point of the dis-
crete rod configuration.
(1) When using the strong approach of outlier removal [4], global matrix multiplication is required. The
multiplier is a constant matrix.
(2) Global matrix multiplication by the nullspace matrix is required. The multiplier is reassembled at each
iteration and time step.
(3) With a penalty factor β →∞, the discrete solution space becomes (R3 × S2)nn.
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