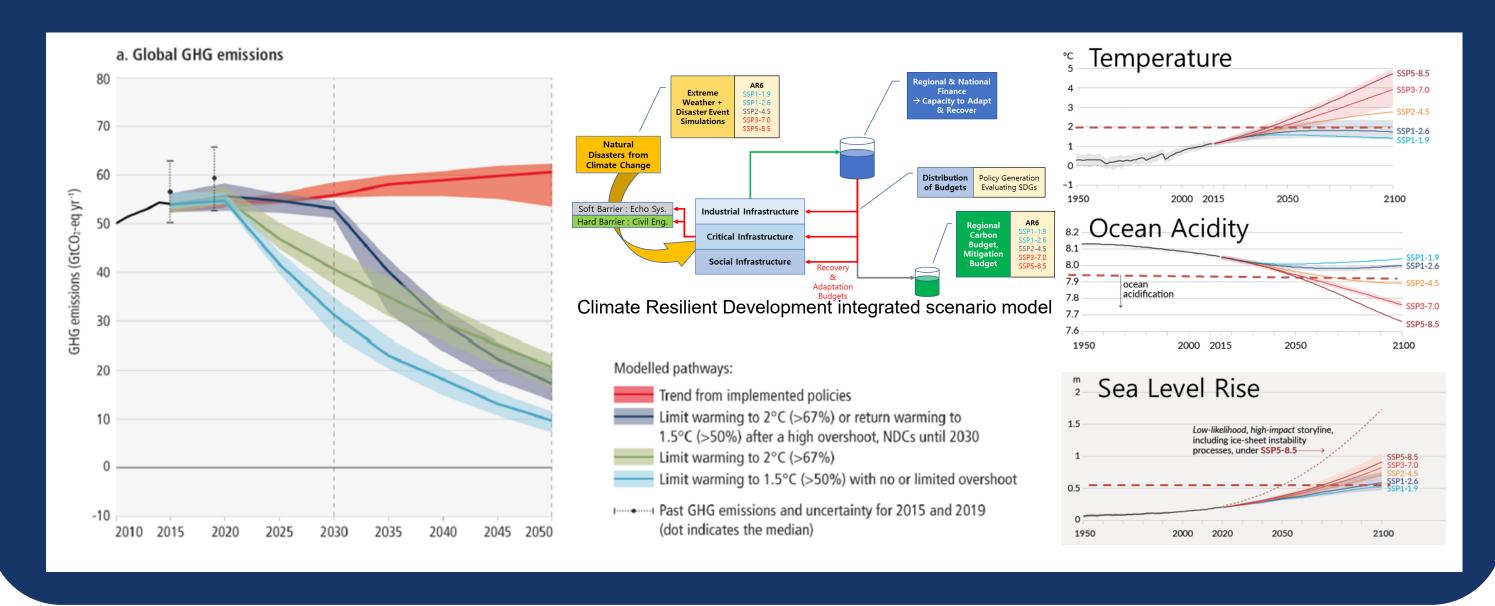


Floating Offshore Wind Cost Optimization Strategy to Enable a Rapid Energy Transition

Yong-Yook Kim^{*1}, Kwan-su Kim¹, Ji Young Kim²

Key WP2 contributors: Matthew Hall³, Erika Lozone³, Fiona Devoy McAulif⁴, Michel Castagne⁵, Muk Chen Ong⁶, Chern Fong Lee⁶, Ju Feng⁷, Chris Wright⁸, Milad Moghtadaei⁸, Matteo Baudino Bessone⁹, Malcolm Bowie¹⁰, Vishnu Rajasree¹¹, Konstanze Kölle¹², Lars Froyd¹³, Junho Lee¹⁴, Zhiyu Jiang¹⁵, Lin Li⁶, Mohammad Youssef Mahfouz¹⁶, Maxime Merle⁵, Madhan Mohan¹⁷, Miho Park¹, Yann Poirette⁵,

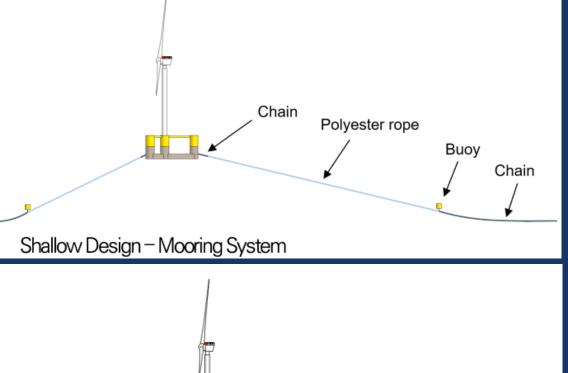

¹Institute for Advanced Engineering, ²Korea Electric Power Research Institute, ³National Renewable Energy Laboratory, ⁴University College Cork, ⁵IFPEN, ⁶University of Stavanger, ⁷Technical University of Denmark, ⁸Gavin and Doherty Geosolutions, ⁹TU Delft, ¹⁰First Energy Development, ¹¹NTNU, ¹²SINTEF, ¹³4Subsea, ¹⁴TAMU, ¹⁵University of Agdeer, ¹⁶University of Stuttgart

Background

It is still possible to reach carbon zero and less than 2 degree celcius global temperature increase by 2050 but need unprecedented transition speeds after 2030:

- The worldwide carbon reduction objectives after 2030: 1.5 billion tons per year after '30
- . The South Korea carbon reduction objectives after 2030: 27 million tons per year after '30
- The reduction 27 million tons of carbon per year can be realized by 16 GW renewables
- . The yearly offshore manufacturing capacity of South Korea is more than 9 million tons in displacement weight of the vessel, which correspond to about 5 GW of floating wind/yr

Adaptation effort should be accompanied for climate resilient development based on scenario study

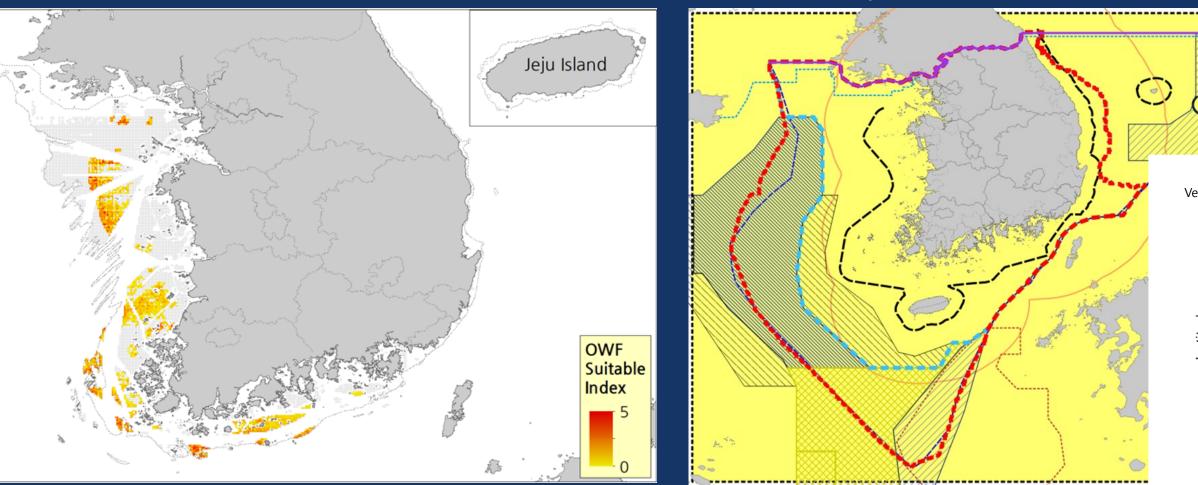


Designs for Different Depths by IEA Wind Task 49 WP2

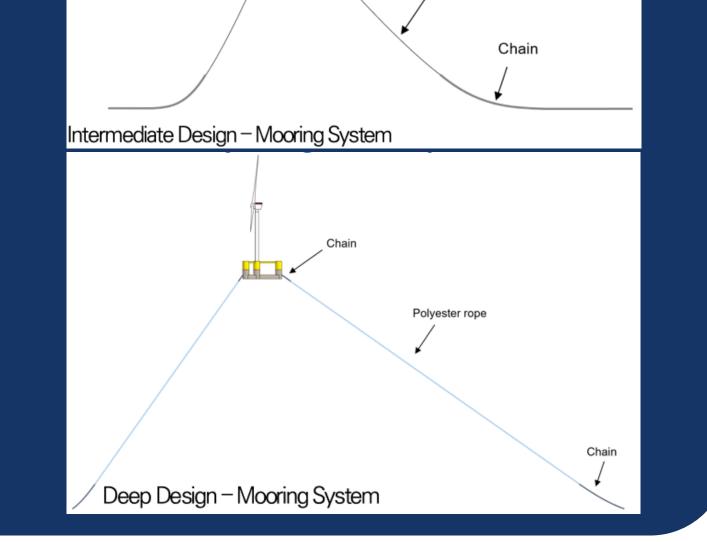
The overal mooring layout for different depths were adapted from IEA Wind Task 49 WP2 : reference array designs for three different representative depths

	Shallow Mooring Design
Number of lines	3
Water depth (m)	60
Anchoring radius (m)	1070
Fairlead radius (m)	58
Fairlead depth (m)	14
Pretension (kN)	1150
Line section 1 type	130 mm R4 stud chain
Line section 1 length (m)	80
Line section 2 type	203 mm polyester
Line section 2 length (m)	754.9
Line section 3 type	130 mm R4 stud chain
Line section 3 length (m)	80

	Intermediate Mooring Design
Number of lines	3
Water depth (m)	300
Anchoring radius (m)	937.6
Fairlead radius (m)	58
Fairlead depth (m)	14

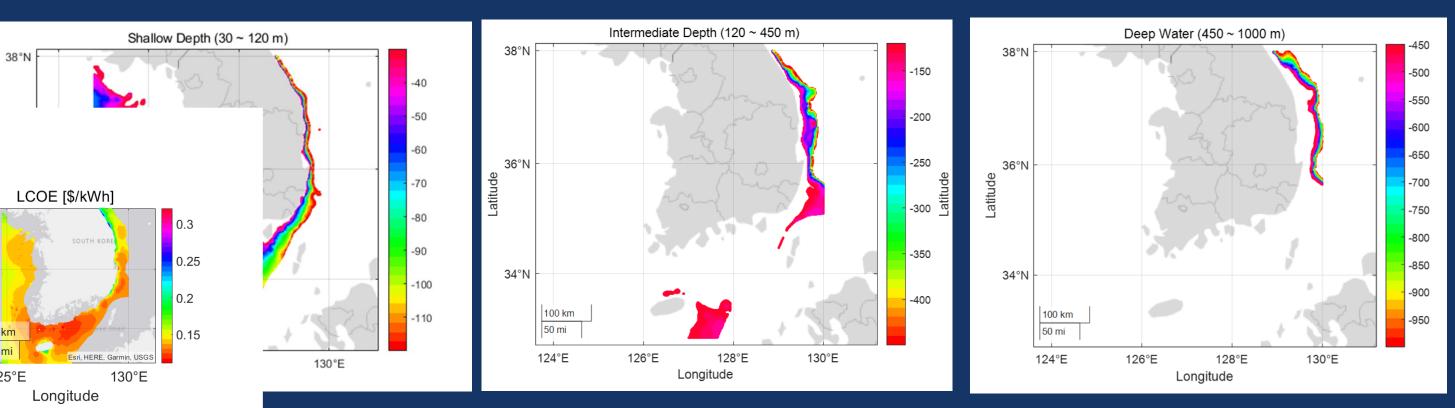


Sheathed wire


Introduction

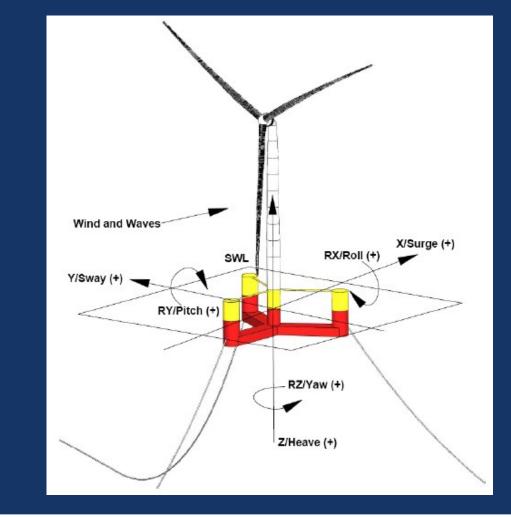
Marine spatial map for offshore wind is being expanded from limited depths of up to 60 m to up to 1,000 m and EEZ areas to find enough marine space for large scale deployment of offshore wind.

- The 1st stage offshore MSP map project only resulted in 25 GW
- The 2nd stage offshore MAP aims to find enough space for large scale deployment up to more than 130 GW and become a one-stop map to solve cnflicts of many stake holder interests



Pretension (kN)	1180
Line section 1 type	150mm sheated steel wire
Line section 1 length (m)	288
Line section 2 type	165 mm R4 studless chain
Line section 2 length (m)	716
Peak offset (m)	35%
	Deep Mooring Design
Number of lines	3
Water depth (m)	800
Anchoring radius (m)	1400
Fairlead radius (m)	58
Fairlead depth (m)	14
Pretension (kN)	3380
Line section 1 type	135 mm R4 studless chain
Line section 1 length (m)	40
Line section 2 type	210 mm polyester
Line section 2 length (m)	1451
Line section 3 type	135 mm R4 studless chain
Line section 3 length (m)	40

Extrapolation for Different Depth Ranges


The water depth around Korea varies significantly, ranging from shallow areas to depths exceeding 1,000 meters. A floating offshore wind map is currently being developed for depths spanning from 30 meters to 1,000 meters. These depths are categorized into three groups to utilize three designs of WP2.

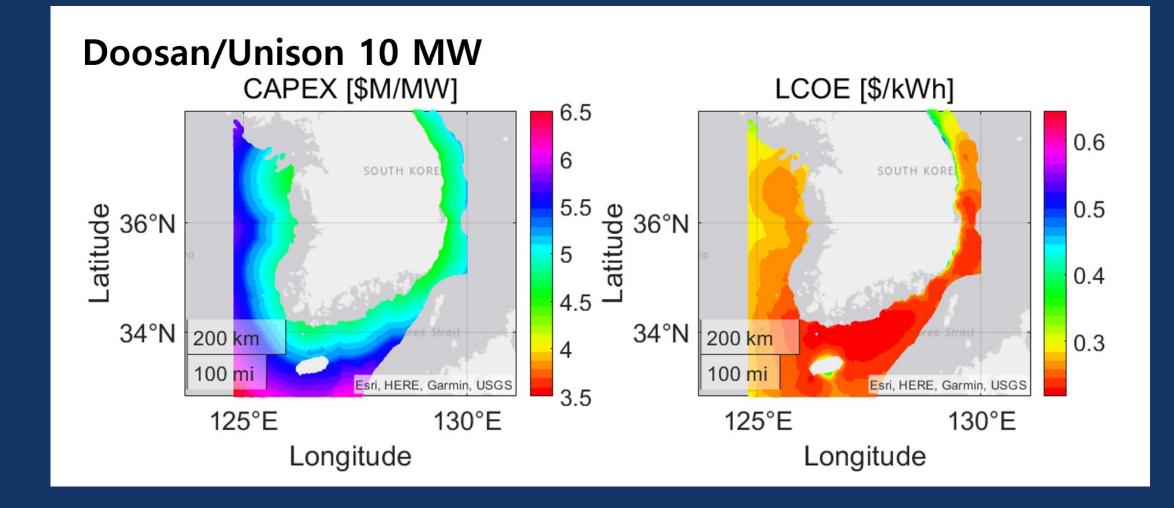
Assumptions for the System

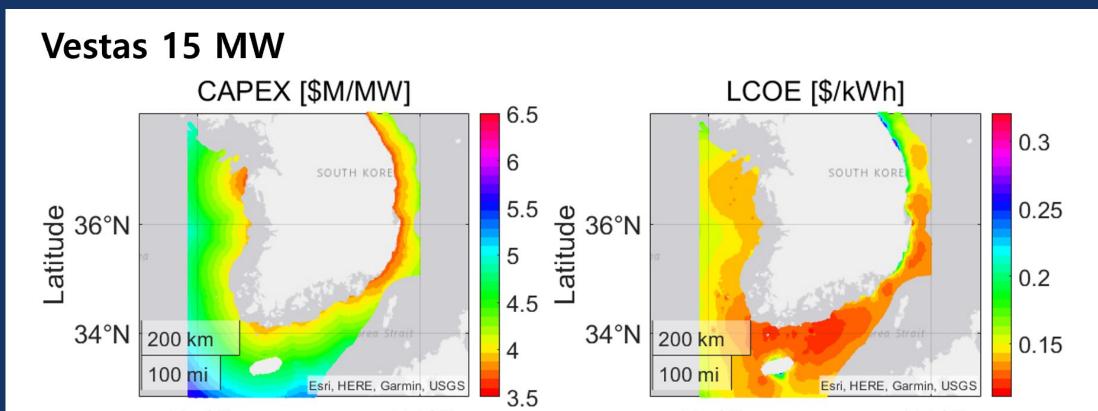
IEA Wind U-Maine Volturn US-S 15 MW Reference Turbine is utilized for floater cost estimations. Three systems which will be manufactured in South Korea will be considered

- Doosan Enerbility 10 MW
- Unison 10 MW
- VESTAS 15 MW (OEM manufactured in S. Korea)

Parameter	Units	Value			
Turbine Rating	MW	15			
Hub Height	m	150			
Platform Type	-	Semisubmersible			
Freeboard	m	15 20			
Draft	m				
Total System Mass	t	20,093			
Platform Mass	t	17,839			
Tower Mass	t	1,263			
RNA Mass	t	991			
Water Depth	m	200			
Mooring System	-	Three-line chain catenary			
Hull Steel Mass	t	3,914			
Mooring Length	m	850			

Assumptions for Key Parameter


As a preliminary study, key values are calculated based on simple formulations with assumptions.


Cost of Turbine								Grid Connec	tion Cost					
Item Unit price							ltem					Unit Price		
Turbine Manufacturing \$1.5 m/MW					Internal Grid 10 MW		{1.74 + (d	ynamic cable leng	th) X 0.0315	5} 100k \$/MW				
Floating Substructure Cost						15 MW		{1.10 + (15.69 km) X 0.0315} = 1.59 100k \$/MW						
Turbine	Steel Unit	t Price	Weig	ht	Cost	:	Unit price/MW			I			Unit price per	
10 MW	\$ 3.6 k/	/ton	3,565	3,565 ton \$		m	\$ 1.90m/ MW	T 11	-	400 MW Plant	Distance	Turbine		Cable
15 MW			3,914	ton	\$ 14.3	m	\$ 1.13m/MW	Turbine	Туре	per unit length	between Turbines	Arrangement (Row, Column)	Length	MW
Mooring Cable Co	ost							10 MW		9.80 100k \$ /kn			71.07 km	1.74 100k
Turbine	Unit Pr	rice	Length	No.	Cost	:	Unit price/MW	10 10100	Static	9.80 100k \$7km	1,55111	10, 5	71.07 KIII	Won/MW
10 MW	\$634/		700 m	3	\$ 1.33	m	\$166k /MW	15 MW	otatio	9.80 100k \$/km	1,680 m	10, 3	50.40 km	1.10 100k
15 MW (steel cha \$417/n		850 m		\$ 1.62	m	\$107k /MW			(450 MW)				Won/MW	
(polyeste								Turbine	Тур	e Price per	unit length	Р	rice per MV	V
Cost of anchor												{(Cable Length) >	x 0.0315} 1	00k \$
Turbine	Unit Price	We	ight N	lo.	Cost per tur	bine	Unit price/MW	10 MW	dynar	mic 12.60 10	00k m/km	* (Cable Length) = $(125 + \sqrt{125^2 + (Depth)^2}) \times 0.099$ km		
10 MW	\$ 8.69k/ton	17	ton	3	\$ 443k		\$ 55k / MW					, ,		
15 MW	_				Ş 443K		\$ 30k /MW	15 MW				15.69 km		
Transportation an		ost						External Grid		ion Cost		Unit Cost		
ItemCostTransportation and installation after assembly at port4.2 100k \$ /MW					Externa			48 100k \$/MW (60 km)						
Floating offshore		t						OPEX						
Item Price						Item Unit cost								
Floating offshore substation cost		+ Rel	Relay distance less than 100km1.5Relay distance more than 100km3.1			1.56	100k \$/MW	OPEX (<u> </u>	1.21 100k m/MW				

LCOE Map Results

OBJECTIVES: Reference FOWAs should a) represent the current state-of-the-art, b) be economic and c) achieve a good level of performance.

PARAMETERS: Focus on **array-level design** aspects and how different **elements are integrated** => incorporates existing designs for

125°E 130°E 125°E 130°E Longitude Longitude

Conclusion and Future Works

- The current preliminary LCOE map results based on simple formulations shows wind speed and scale of the system are most crucial.
- Detailed studies on optimal layouts, installation, O&M, and etc are required.
- Optimal layout studies will be carried out based on WISDEM, FLORIS, and other tools.
- Optimal installation and O&M cost estimation will be based on tools such as ORBIT and WOMBAT.
 As climate disasters rooming ever larger, rapid energy transitions based on Climate Resilient Development approach is utmost essential considering adaptation aspect equally.
- This is part of an ongoing work to build a one-stop map for offshore wind marine spatial map, which
 considers tens of constrains including fisheries and environmental concerns.

References

C. Allen et al., "Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine," National Renewable Energy Lab. (NREL), Golden, CO (United States), NREL/TP-5000-76773, Jul. 2020.
 M. Hall et. al., "The IEA Wind Task 49 Reference Floating Wind Array Design Basis," National Renewable Energy Lab. (NREL), Golden, CO (United States), NREL/TP-5000-89709, June. 2024.

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (Grant No. 202300301792).