LOLLEX- The LOLland offshore Lidar EXperiment

A novel approach to collect data for the investigation of wind farm flow and measure entrainment inside a finite wind farm

Shokoufeh Malekmohammadi, Etienne Cheynet, Joachim Reuder University of Bergen

Offshore wind farms density in northern Europe

Farm-induced wakes spanning dozen of kilometres

Source: Finserås, E., Anchustegui, I. H., Cheynet, E., Gebhardt, C. G., & Reuder, J. (2024). Gone with the wind? Wind farm-induced wakes and regulatory gaps. Marine Policy, 159, 105897.

3

Complexity of flow physics in wind farms

Motivation

- Flow physics of (offshore) large wind farms is fundamentally different from a single wind turbine (Luzzatto et al., 2018)
- Grand Challenges in Wind Energy Science calls for improved understanding of atmospheric physics in wind farms (Veers et al., 2019)
- Need for novel measurement strategies to analyse wind farm wakes and performance-enhancing parameters such as vertical momentum entrainment.

[•] Luzzatto-Fegiz, Paolo, and Colm-cille P. Caulfield. "Entrainment model for fully-developed wind farms: effects of atmospheric stability and an ideal limit for wind farm performance." *Physical Review Fluids* 3.9 (2018): 093802.

[•] Veers, Paul, et al. "Grand challenges in the science of wind energy." Science 366.6464 (2019): eaau2027.

Train2Wind ITN Project

• A measurement campaign at a full-scale offshore wind farm.

- A high-intensity measuring period using UAS, lidars, and collect information from satellites.
- Measuring the transition between the undisturbed air and the atmospheric boundary layer in the presence of the wind farm.

Source: Giebel, Gregor, et al. "Train2Wind: An Overview of the Lollex Experiment." 7th International Conference Energy & Meteorology: Towards climate-resilient energy systems. 2023.

Work Package 2: Remote sensing with lidars

• How can we collect high resolution data of vertical wind velocity in an offshore wind farm?

• Can we use Ship-Based Lidar measurements?

• How can the effects of ship motion be compensated?

Lollex Campaign

September 2022-August 2023

Photo by Shokoufeh Malekmohammadi

Campaign site

- Rodsand2 wind farm
- Location: Baltic sea, south of Lolland
- Number of Turbines: 91
- Hub height: 68.5m
- Rotor blade diameter: 93m

Photo source: https://gsseacon.com/realisation/roedsand-2-offshore-wind-farm/

Instrumentations

Wind Cube 100S

Picture source: https://www.nrgsystems.com/assets /resources/NRG-Windcube-Lidar-Scanning-Doppler-Lidar-Brochure.pdf

• Vertical scanning mode for 25 minutes

h=2500m

h= 40m

- Vertical wind velocity
- Resolution 10 m , 1 Hz

• Wind velocity profile

Wind Cube V2

Picture source: http://www.windup.pt/resources/newslett er3pdf19av.pdf

- Measuring wind speed profile from 40m up to 300m
- IMU measuring the motion details (rotations, translational speed, heading, GPS location)

h

Installation of lidars on the CTV

Photo by Christiane Duscha

Photo by Shokoufeh Malekmohammadi

Example of the CTV trajectory

 CTV did one round trip per day, leaving the harbour at around 7 am and returning around 6 pm.

DATA availability

Wind conditions during the campaign

- Wind rose based on NORA3 data
- Mean wind at a height of 100 m
- Westerly winds dominate
- Median wind speed 8.5 m/s

Data processing

Data Filtering and noise treatment

- Data with CNR lower than -24 dB (WindCube V2), -27 dB (WindCube 100S) filtered
- Despiked data using the median absolute deviation filter
- Applied motion correction

Retrieval of wind velocity for DBS mode

• LOS velocity is linked to wind velocity vector as

 $v_r = u \sin\theta\cos\alpha + v \sin\theta\sin\alpha + w \cos\theta$

• Using the four LOS velocities the linear system of equations is solved:

$$\overrightarrow{v_r} = N. \overrightarrow{u},$$

Motion Correction

• If lidar is experiencing motion:

 $\overrightarrow{v_r} = \mathbf{RN}(\overrightarrow{u} + \overrightarrow{u_T}),$

Where

- *R* is the rotational matrix
- $\overrightarrow{u_T}$ is the translational motion vector

Results

Wind speed timeseries (Wind profiler)

Wind speed timeseries (two lidars)

Wind speed timeseries (lidars vs NORA3)

Errors profile

- Reasonable agreement between the NORA3 hindcast and observational data
- Absolute error range : 0-0.6 m/s
- NORA3 overestimates wind speed at height below 100 m
- RMSE is different for each lidar and needs more investigation

Case Study 1: Entrainment Observations

- Measurements in the morning under stable atmospheric conditions
- Vertical coherent structures
- Increase in σ_w to 0.5 m/s
- $TI: 0.11 0.13 \ (TI = \frac{\sigma_w}{\overline{u}})$
- Increase in TI due to external factors like shear instabilities or entrainment of momentum

Case Study 2: Atmospheric Wave Observations

Case Study 2: Atmospheric Wave Observations on 22 February 2023

- Periodic motion with a 2-minute cycle
- Phase shift between altitudes indicating wind shear influence
- Wave Effects extends below 200 m
- Potential enhancement of wake recovery if occurring above wind farm

Case Study 3: Kelvin-Helmholtz billows (KHBs) above the wind farm

 KHBs between 600 m and 800

- Flow interactions with offshore wind turbines within the first 200 m.
- Rarity and brief appearance of KHBs make this observation significant

Conclusion

- Ship-based lidar measurements have (after appropriate motion correction) a great potential for offshore wind energy meteorology.
- Lollex campaign provides a novel and unique dataset for the investigation of complex wind farm flow and entrainment offshore.
- The combination of a lidar wind profiler with a scanning lidar in fixed staring mode, provides information on wind farm boundary layer with a unique spatial and temporal resolution.

Acknowledgement

- National Norwegian infrastructure project Offshore Boundary Layer
 Observatory (OBLO)
- Train2Wind ITN project EU no. 861291
- RWE Wind Services A/S

- Christiane Anabell Duscha, Tor Olav Kristensen, Anak Bahadur Bhandari
- Technical University of Denmark (DTU)

Let's Connect!

Find me on LinkedIn I'm open to new opportunities

Shokoufeh Malekmohammadi

PhD Candidate at Bergen Offshore Wind Centre | Wind Lidar Expert | Wind Measure...

