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Stable Boundary Layer Wind Profiles
 

A Comparison of Analytical Models and LiDAR Observations
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Background

Atmospheric Stability and Wind Turbine Response
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Thermal stratification influences the loading and power production of wind 

turbines through effects on:

1. Mean wind profiles:
▪ Wind shear

▪ Wind veer

2. Turbulence characteristics:
▪ Turbulence intensity

▪ Turbulence spectra

▪ Coherence 

3. Wake behaviour:
▪ Wake recovery

▪ Wake meandering

▪ Wake skewing
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Within the surface layer, effects of thermal stratification are efficiently represented using 

the logarithmic wind profile:

▪ 𝑈 𝑧 =
𝑢∗

𝜅
ln

𝑧

𝑧0
− 𝜓

▪ Stability correction: 𝜓 = f 𝑧, 𝐿

However, in stable atmosphere, surface layer theory: 

▪ tends to overestimate wind speeds above the surface layer.

▪ does not account for frequently occurring low-level jets.[3,4]

▪ does not account for frequently occurring wind veering.[1,5]
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Stable Boundary Layer Wind Profiles – 

A Comparison of Analytical Models and LiDAR Observations

▪ Datasets

▪ Analytical Wind Profile Models

▪ Theory

▪ Parametrization

▪ Wind Profile Comparisons

▪ Conclusion



Datasets
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FINO1 FINO3

June 2015 – 

Oct. 2016

Aug. 2013 – 

Oct. 2014

WindCube 100S

𝑧 = 78 … 3528 m 

with d𝑧 = 25 m

WindCube WLS70

𝑧 = 125 … 2025 m 

with d𝑧 = 50 m

Mast data at

𝑧 = 34 … 102 m
Mast data at

𝑧 = 29 … 101 m

[6] https://www.fino-offshore.de. Accessed 09.01.2025.

[7] https://www.fino1.de/en/about/design.html. Accessed 09.01.2025.

[8] https://www.fino3.de/en/location/design.html. Accessed 09.01.2025.

[6]

[7] [8]



▪ 10-min. averaged LiDAR profiles classified using ERA5 Obukhov length estimate.

▪ Observations filtered for 𝐿 ≥ 0 m and 𝑧 ≤ 500 m.

▪ FINO1

▪ FINO3

Data Filtering
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Analytical Wind Profile Models

Logarithmic Wind Profile
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Surface layer theory with stability 

correction:

▪ 𝑈 𝑧 =
𝑢∗

𝜅
ln

𝑧

𝑧0
+ 𝜓

▪ 𝜓 = 4.7
𝑧

𝐿
  [9]

Nomenclature:

𝑢∗ Friction velocity

𝜅 von Kármán constant

𝑧0 Surface roughness

𝜓 Stability function

𝑏 Model constant

𝐿 Obukhov length

[9] Businger, Joost A., Wyngaard, John C., Izumi, Yutaka and Bradley, Edward F. "Flux-profile relationships in the atmospheric surface layer." Journal of the Atmospheric Sciences. Vol. 28 No. 2 (1971): pp. 181-

189. DOI 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.



Analytical Wind Profile Models

Gryning Wind Profile
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Extension of the logarithmic profile: [10]

▪ 𝑈 𝑧 =
𝑢∗

𝜅
ቈln

𝑧

𝑧0
− 𝜓 1 −

𝑧

2 𝑧i

+
𝑧

𝐿MBL
−

𝑧

𝑧i

𝑧

2 𝐿MBL

▪
𝑢∗

𝑓c 𝐿MBL
= −2 ln

𝑢∗

𝑓c 𝑧0
+ 55 𝑒

−
ൗ𝑢∗

2 𝑓c 𝐿 2

400

Nomenclature:

𝑢∗ Friction velocity

𝜅 von Kármán constant

𝑧0 Surface roughness

𝜓 Stability function

𝑧i BL height

𝐿MBL Middle BL length scale

𝑓c Coriolis frequency

𝐿 Obukhov length

[10] Gryning, Sven-Erik, Batchvarova, Ekaterina, Brümmer, Burghard, Jørgensen, Hans and Larsen, Søren. "On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer." 

Boundary-layer meteorology. Vol. 124 (2007): pp. 251-268. DOI 10.1007/s10546-007-9166-9.



Analytical Wind Profile Models

Narasimhan Stable ABL Model
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Coupling of surface and Ekman layer flow: [11]

Model inputs: 𝐿, 𝑧0, 𝑓c, 𝑁∞, 𝐺

Streamwise wind velocity:

▪ 𝑈 መ𝜉 ≤ መ𝜉𝑚 = 𝑢∗
1

𝜅
 ln

𝜉
𝜉0

+ 5𝜇 + 0.3𝜇𝑁
መ𝜉 − መ𝜉0

▪ 𝑈 መ𝜉 ≥ መ𝜉𝑚 = 𝑢∗ −𝑔′ መ𝜉 1 −
𝜉
𝜉𝑖

Τ3 2

+ 𝑔 መ𝜉
3

2𝜉𝑖
1 −

𝜉
𝜉𝑖

 + 𝑈𝑔

Lateral wind velocity:

▪ 𝑉 መ𝜉 = 𝑢∗ 
𝑔 𝜉 𝑔′ 𝜉

1−𝑔 𝜉
2

1 −
𝜉
𝜉𝑖

Τ3 2

൩+
3

2𝜉𝑖
1 − 𝑔 መ𝜉

2
1 −

𝜉
𝜉𝑖

Τ1 2

+ 𝑉𝑔

▪ መ𝜉 = Τ𝑧 𝑓𝑐 𝑢∗

▪ መ𝜉0 = Τ𝑧0 𝑓𝑐 𝑢∗

▪ መ𝜉𝑖 = Τ𝑧𝑖𝑓𝑐 𝑢∗

▪ መ𝜉𝑚 = Τ𝑧𝑚 𝑓𝑐 𝑢∗ = 0.2 መ𝜉
𝑖

▪ 𝜇 = Τ𝑢∗ 𝜅 𝑓𝑐  𝐿

▪ 𝜇𝑁 = Τ𝑁∞ 𝑓𝑐

▪ 𝑔 መ𝜉 = 𝑐𝑔 1 − 𝑒 ൗ−𝜉 Γ 𝜉𝑖

▪ 𝑔′ መ𝜉 =
𝑐𝑔

Γ 𝜉𝑖
 𝑒 ൗ−𝜉 Γ 𝜉𝑖

▪ 𝑐𝑔 = 1.43

▪ Γ = 0.83

[11] Narasimhan, Ghanesh, Gayme, Dennice F. and Meneveau, Charles. "Analytical model coupling Ekman and surface layer structure in atmospheric boundary layer flows." Boundary-Layer Meteorology. Vol. 190 

No. 4 (2024): p. 16. DOI 10.1007/s10546-024-00859-9.



Analytical Wind Profile Models

Narasimhan Stable ABL Model
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Geostrophic drag law:

▪
𝜅 𝑈𝑔

𝑢∗
= ln

𝑢∗

𝑓𝑐 𝑧0
− 𝐴

▪
𝜅 𝑉𝑔

𝑢∗
= −𝐵

▪ 𝐺 = 𝑈𝑔
2 + 𝑉𝑔

2

Derived constants:

▪ 𝐴 = − ln መ𝜉𝑚 − 𝜅  5𝜇 + 0.3𝜇𝑁
መ𝜉𝑚 − መ𝜉0 ൨+𝑔′ መ𝜉𝑚 1 − 𝑐𝑚

3

2 − 𝑔 መ𝜉𝑚
3

2
መ𝜉𝑖 1 − 𝑐𝑚

▪ 𝐵 =
3 𝜅

2 𝜉𝑖

Boundary layer height model:

▪ መ𝜉𝑖 = 𝐶𝑇𝑁
−2 + 𝐶𝐶𝑁

−2 𝜇𝑁 + 𝐶𝑁𝑆
−2 𝜇 − Τ1 2

▪ 𝑐𝑚 = Τ𝑧𝑚 𝑧𝑖 = 0.2

▪ 𝐶𝑇𝑁 = 0.5

▪ 𝐶𝐶𝑁 = 1.6

▪ 𝐶𝑁𝑆 = 0.78



Analytical Wind Profile Models

Narasimhan Stable ABL Model
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Resulting wind velocity and direction profiles:



Analytical Wind Profile Models

Model Comparison for Different Stability Conditions
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Analytical Wind Profile Models

Model Parametrization
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Parameter Logarithmic Gryning Narasimhan Source

Geostrophic wind 

velocity

𝐺 Fitted to sonic anemometer 

wind speed at 𝑧 = 81 m | 101 m

Friction velocity 𝑢∗ Fitted to sonic anemometer 

wind speed at 𝑧 = 81 m | 101 m

Obukhov length 𝐿 From ERA5 hindcast data

Surface roughness 𝑧0 From Charnock’s relation using 

𝐶 = 0.018

Coriolis frequency 𝑓c From FINO1 | FINO3 latitude

Boundary layer 

height

𝑧i From ERA5 hindcast data



Wind Profile Comparison

Exemplary 10-minute Profiles Recorded at FINO1
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Wind Profile Comparison

Logarithmic Velocity Profile vs. Observations
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Data from FINO1 for 𝐿 ≥ 0 and 𝑧 ≤ min 𝑧i, 500 m .



Wind Profile Comparison

Gryning Velocity Profile vs. Observations
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Data from FINO1 for 𝐿 ≥ 0 and 𝑧 ≤ min 𝑧i, 500 m .



Wind Profile Comparison

Narasimhan Velocity Profile vs. Observations
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Data from FINO1 for 𝐿 ≥ 0 and 𝑧 ≤ min 𝑧i, 500 m .



Wind Profile Comparison

Narasimhan Direction Profile vs. Observations
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Data from FINO1 for 𝐿 ≥ 0 and 𝑧 ≤ min 𝑧i, 500 m .



Wind Profile Comparison

Deviations Between Modelled and Observed Profiles
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Normalized RMSE across wind profile models and atmospheric stability.



Wind Profile Comparison

Deviations Between Modelled and Observed Profiles
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Normalized RMSE across wind profile models and height.



Conclusion
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▪ Tall lidar profiles observed at FINO1 and FINO3…

▪ … supplemented with mast data.

▪ … classified using ERA5 Obukhov length estimate.

▪ 3 analytical profile models parameterized and compared with observations.

▪ Neutral to near-stable conditions:

▪ All models perform similarly well.

▪ Logarithmic profile shows slightly larger deviations.

▪ Stable to very stable conditions:

▪ Narasimhan profile shows lowest deviations.

▪ Logarithmic profile shows largest deviations.

▪ Deviations further increase with height for all models.



Outlook
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Subsequent study: L Vogt, J B Jakobsen, J B de Vaal: “Sensitivity of Floating Wind Turbine

  Response to Stable Boundary Layer Wind Profiles”

         

       

 

  

   

   

   

   

   

  
  

 

         

       

         

       

         

       

 

  

   

   

   

   

   

  
  

 

         

       

         

       

           

       

          

      

      



Thank you for your attention!
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