

Stable Boundary Layer Wind Profiles A Comparison of Analytical Models and LiDAR Observations

Lennart Vogt, Jasna B. Jakobsen, Etienne Cheynet, Lin Li

EERA DeepWind Conference 2025 Session 1B: Met-ocean conditions

15.01.2025, Trondheim

Background

Atmospheric Stability and Wind Turbine Response

Thermal stratification influences the loading and power production of wind turbines through effects on:

- 1. Mean wind profiles:
 - Wind shear
 - Wind veer
- 2. Turbulence characteristics:
 - Turbulence intensity
 - Turbulence spectra
 - Coherence
- 3. Wake behaviour:
 - Wake recovery
 - Wake meandering
 - Wake skewing

- Chanprasert, Warit, Sharma, Rajnish N., Cater, John E. and Norris, Stuart E. "Observation and Large Eddy Simulation of Coastal Winds at Anholt Offshore Wind Farm." Journal of Physics: Conference Series. Vol. 2362 No. 1 (2022): p. 012008. DOI 10.1088/1742-6596/2362/1/012008.
- [2] Cheynet, Etienne, Jakobsen, Jasna B. and Reuder, Joachim. "Velocity spectra and coherence estimates in the marine atmospheric boundary layer." Boundary-layer meteorology. Vol. 169 No. 3 (2018): pp. 429-460. DOI 10.1007/s10546-018-0382-2.

 nS_u/u_*^2

Background

Atmospheric Stability and the Mean Wind Profile

Within the surface layer, effects of thermal stratification are efficiently represented using the logarithmic wind profile:

- $U(z) = \frac{u_*}{\kappa} \left[\ln \left(\frac{z}{z_0} \right) \psi \right]$
- Stability correction: $\psi = f(z, L)$

However, in stable atmosphere, surface layer theory:

- tends to overestimate wind speeds above the surface layer.
- does not account for frequently occurring low-level jets.^[3,4]
- does not account for frequently occurring wind veering.^[1,5]

- [1] Chanprasert, Warit, Sharma, Rajnish N., Cater, John E. and Norris, Stuart E. "Observation and Large Eddy Simulation of Coastal Winds at Anholt Offshore Wind Farm." Journal of Physics: Conference Series. Vol. 2362 No. 1 (2022): p. 012008. DOI 10.1088/1742-6596/2362/1/012008.
- [3] De Jong, Emily, Quon, Éliot and Yellapantula, Shashank. "Mechanisms of Low-Level Jet Formation in the US Mid-Atlantic Offshore." Journal of the Atmospheric Sciences. Vol. 81 No. 1 (2024): pp. 31-52. DOI 10.1175/JAS-D-23-0079.1.
- [4] Borvarán, Dager, Peña, Alfredo and Gandoin, Rémi. "Characterization of offshore vertical wind shear conditions in Southern New England." Wind Energy. Vol. 24 No. 5 (2021): pp. 465-480. DOI 10.1002/we.2583.
- 5] Berg, Jacob, Mann, Jakob and Patton, Edward G. "Lidar-observed stress vectors and veer in the atmospheric boundary layer." Journal of Atmospheric and Oceanic Technology. Vol. 30 No. 9 (2013): pp. 1961-1969. DOI 10.1175/JTECH-D-12-00266.1.

Overview

Stable Boundary Layer Wind Profiles -

A Comparison of Analytical Models and LiDAR Observations

- Datasets
- Analytical Wind Profile Models
 - Theory
 - Parametrization
- Wind Profile Comparisons
- Conclusion

Datasets

[6] https://www.fino-offshore.de. Accessed 09.01.2025.
 [7] https://www.fino1.de/en/about/design.html. Accessed 09.01.2025.

Universitetet

i Stavanger

[8] https://www.fino3.de/en/location/design.html. Accessed 09.01.2025.

5

Data Filtering

- 10-min. averaged LiDAR profiles classified using ERA5 Obukhov length estimate.
- Observations filtered for $L \ge 0$ m and $z \le 500$ m.

FINO1

FINO3

Analytical Wind Profile Models Logarithmic Wind Profile

Surface layer theory with stability correction:

•
$$U(z) = \frac{u_*}{\kappa} \left[\ln \left(\frac{z}{z_0} \right) + \psi \right]$$

• $\psi = 4.7 \frac{z}{L}$

[9] Businger, Joost A., Wyngaard, John C., Izumi, Yutaka and Bradley, Edward F. "Flux-profile relationships in the atmospheric surface layer." Journal of the Atmospheric Sciences. Vol. 28 No. 2 (1971): pp. 181-189. DOI 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

[9]

Analytical Wind Profile Models Gryning Wind Profile

Universitetet i Stavanger

[10] Gryning, Sven-Erik, Batchvarova, Ekaterina, Brümmer, Burghard, Jørgensen, Hans and Larsen, Søren. "On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer." Boundary-layer meteorology. Vol. 124 (2007): pp. 251-268. DOI 10.1007/s10546-007-9166-9.

Analytical Wind Profile Models Narasimhan Stable ABL Model

Coupling of surface and Ekman layer flow: [11]

Model inputs: $L, z_0, f_c, N_{\infty}, G$

Streamwise wind velocity:

- $U(\hat{\xi} \leq \hat{\xi}_m) = u_* \left[\frac{1}{\kappa} \ln\left(\frac{\hat{\xi}}{\hat{\xi}_0}\right) + (5\mu + 0.3\mu_N)(\hat{\xi} \hat{\xi}_0) \right]$
- $U(\hat{\xi} \ge \hat{\xi}_m) = u_* \left[-g'(\hat{\xi}) \left(1 \frac{\hat{\xi}}{\hat{\xi}_i} \right)^{3/2} + g(\hat{\xi}) \frac{3}{2\hat{\xi}_i} \sqrt{1 \frac{\hat{\xi}}{\hat{\xi}_i}} \right] + U_g$

Lateral wind velocity:

•
$$V(\hat{\xi}) = u_* \left[\frac{g(\hat{\xi})g'(\hat{\xi})}{\sqrt{1-g(\hat{\xi})^2}} \left(1 - \frac{\hat{\xi}}{\hat{\xi}_i} \right)^{3/2} + \frac{3}{2\hat{\xi}_i} \sqrt{1-g(\hat{\xi})^2} \left(1 - \frac{\hat{\xi}}{\hat{\xi}_i} \right)^{1/2} \right] + V_g$$

- $\hat{\xi} = z f_c / u_*$
- $\hat{\xi}_0 = z_0 f_c/u_*$
- $\hat{\xi}_i = z_i f_c / u_*$
- $\hat{\xi}_m = z_m f_c / u_* = 0.2 \hat{\xi}_i$

•
$$\mu = u_*/(\kappa f_c L)$$

•
$$\mu_N = N_\infty / f_c$$

•
$$g(\hat{\xi}) = c_g \left[1 - e^{-\hat{\xi}/(\Gamma \, \hat{\xi}_i)} \right]$$

•
$$g'(\hat{\xi}) = \frac{c_g}{\Gamma \hat{\xi}_i} e^{-\hat{\xi}/(\Gamma \hat{\xi}_i)}$$

•
$$c_g = 1.43$$

$$\Gamma = 0.83$$

Analytical Wind Profile Models Narasimhan Stable ABL Model

Geostrophic drag law:

- $\frac{\kappa U_g}{u_*} = \ln\left(\frac{u_*}{f_c z_0}\right) A$ • $\frac{\kappa V_g}{u_*} = -B$
- $G = \sqrt{U_g^2 + V_g^2}$

Derived constants:

- $A = -\ln \hat{\xi}_m \kappa \left[(5\mu + 0.3\mu_N) (\hat{\xi}_m \hat{\xi}_0) + g'(\hat{\xi}_m) (1 c_m)^{\frac{3}{2}} g(\hat{\xi}_m) (\frac{3}{2}\hat{\xi}_i) \sqrt{1 c_m} \right]$
- $\bullet \quad B = \frac{3\kappa}{2\,\hat{\xi}_i}$

Boundary layer height model:

$$\hat{\xi}_i = (C_{TN}^{-2} + C_{CN}^{-2} \,\mu_N + C_{NS}^{-2} \,\mu)^{-1/2}$$

• $c_m = z_m/z_i = 0.2$

- $C_{TN} = 0.5$
- $C_{CN} = 1.6$
- $C_{NS} = 0.78$

Analytical Wind Profile Models Narasimhan Stable ABL Model

Resulting wind velocity and direction profiles:

Analytical Wind Profile Models Model Comparison for Different Stability Conditions

Analytical Wind Profile Models Model Parametrization

Parameter		Logarithmic	Gryning	Narasimhan	Source
Geostrophic wind velocity	G				Fitted to sonic anemometer wind speed at $z = 81 \text{ m} \mid 101 \text{ m}$
Friction velocity	u_*				Fitted to sonic anemometer wind speed at $z = 81 \text{ m} \mid 101 \text{ m}$
Obukhov length	L				From ERA5 hindcast data
Surface roughness	<i>z</i> ₀				From Charnock's relation using $C = 0.018$
Coriolis frequency	f _c				From FINO1 FINO3 latitude
Boundary layer height	z _i				From ERA5 hindcast data

Wind Profile Comparison

Exemplary 10-minute Profiles Recorded at FINO1

Wind Profile Comparison Logarithmic Velocity Profile vs. Observations

Data from FINO1 for $L \ge 0$ and $z \le \min(z_i, 500 \text{ m})$.

Wind Profile Comparison Gryning Velocity Profile vs. Observations

Data from FINO1 for $L \ge 0$ and $z \le \min(z_i, 500 \text{ m})$.

Wind Profile Comparison Narasimhan Velocity Profile vs. Observations

Data from FINO1 for $L \ge 0$ and $z \le \min(z_i, 500 \text{ m})$.

Wind Profile Comparison Narasimhan Direction Profile vs. Observations

Data from FINO1 for $L \ge 0$ and $z \le \min(z_i, 500 \text{ m})$.

Wind Profile Comparison

Deviations Between Modelled and Observed Profiles

Normalized RMSE across wind profile models and atmospheric stability.

Universitetet

i Stavanger

Wind Profile Comparison

Deviations Between Modelled and Observed Profiles

Normalized RMSE across wind profile models and height.

Universitetet

i Stavanger

Conclusion

- Tall lidar profiles observed at FINO1 and FINO3...
 - ... supplemented with mast data.
 - ... classified using ERA5 Obukhov length estimate.
- 3 analytical profile models parameterized and compared with observations.
- Neutral to near-stable conditions:
 - All models perform similarly well.
 - Logarithmic profile shows slightly larger deviations.
- Stable to very stable conditions:
 - Narasimhan profile shows lowest deviations.
 - Logarithmic profile shows largest deviations.
- Deviations further increase with height for all models.

Outlook

Subsequent study:

L Vogt, J B Jakobsen, J B de Vaal: "Sensitivity of Floating Wind Turbine Response to Stable Boundary Layer Wind Profiles"

Thank you for your attention!

